
 

 

2 

 

EE6008 MICROCONTROLLER BASED SYSTEM DESIGN   L T P C 3 0 0 3 

 

UNIT I - INTRODUCTION TO PIC MICROCONTROLLER   9 

Introduction to PIC Microcontroller–PIC 16C6x and PIC16C7x Architecture–PIC16cxx–- 

Pipelining -Program Memory considerations – Register File Structure - Instruction Set - Addressing 

modes –Simple Operations. 

UNIT II - INTERRUPTS AND TIMER      9 

PIC micro controller Interrupts- External Interrupts-Interrupt Programming–Loop time 

subroutine -Timers-Timer Programming– Front panel I/O-Soft Keys– State machines and key 

switches– Display of Constant and Variable strings. 

UNIT III - PERIPHERALS AND INTERFACING    9 

I2C Bus for Peripherals Chip Access– Bus operation-Bus subroutines– Serial EEPROM—

Analog to Digital Converter–UART-Baud rate selection–Data handling circuit–Initialization - LCD and 

keyboard Interfacing -ADC, DAC, and Sensor Interfacing. 

UNIT IV - INTRODUCTION TO ARM PROCESSOR    9 

ARM Architecture –ARM programmer‘s model –ARM Development tools- Memory 

Hierarchy –ARM Assembly Language Programming–Simple Examples–Architectural Support for 

operating systems. 

UNIT V - ARM ORGANIZATION      9 

3-Stage Pipeline ARM Organization– 5-Stage Pipeline ARM Organization–ARM Instruction 

Execution- ARM Implementation– ARM Instruction Set– ARM coprocessor interface– Architectural 

support for High Level Languages – Embedded ARM Applications. 

      

        TOTAL: 45 PERIODS 

 

 

 

www.EasyEngineering.net

Regulation 2017 

SANCET

http://easyengineering.net
http://easyengineering.net


 

 

3 

 

1. Aim & Objective of the subject 

 To introduce the architecture of PIC microcontroller 

 To educate on use of interrupts and timers 

 To educate on the peripheral devices for data communication and transfer 

 To introduce the functional blocks of ARM processor 

 To educate on the architecture of ARM processors 

2. Need & Importance of the subject 

 This subject will be helpful to do the project by their own because the secrets behind 

the electronic goods can be extracted by grabbing the subject with at most interest. 

 This subject will give a basic knowledge in embedded system 

 This subject will enhance the knowledge in mobile phones 

 

3. Industrial Connectivity & Latest Development 

 Cortex-A9  used in Samsung Galaxy S II, Sony Xperia U, Apple iPad 

 ARM926EJ-S used in Sony Ericsson (K,W series), LG arena 

 Cortex-A8 used in HTC Desire , Apple iPhone3GS 

 ARM710  used in Acorn RISC PC 700 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/ARM_Cortex-A9_MPCore
https://en.wikipedia.org/wiki/ARM9E
https://en.wikipedia.org/wiki/ARM_Cortex-A8
https://en.wikipedia.org/wiki/ARM7
http://easyengineering.net
http://easyengineering.net


 

 

4 

 

 

SCAD GROUP OF INSTITUTIONS 

Department of Electrical and Electronics Engineering 

Detailed Lesson Plan 

Name of the Subject& Code: EE 6008 - MICROCONTROLLER BASED    

          SYSTEM DESIGN 

Text Book 

1. Peatman,J.B., ―Design with PIC Micro Controllers‖PearsonEducation,3rdEdition, 2004. 

2. Furber,S., ―ARM System on Chip Architecture‖ Addison Wesley trade Computer 

Publication, 

References 

1. Mazidi, M.A.,―PIC Microcontroller‖ Rollin Mckinlay, Danny causey Printice Hall of India, 

2007. 

  (Copies Available in Library) 

 

S.No

. 

Unit Topic to be covered Hours 

Planned 

Cumulativ

e Hours 

Books 

Refered 

UNIT I - INTRODUCTION TO PIC MICROCONTROLLER 

1 1 Introduction to PIC 1 1 T 1 

2 1 PIC 16C6x Architecture 1 2 T 1 

3 1 PIC16C7x Architecture 1 3 T 1 

4 1 Pipelining 1 4 T 1 

5 1 Program Memory considerations 2 6 T 1 

6 1 Register File Structure 1 7 T 1 

7 1 Instruction Set 1 8 T 1 

8 1 Addressing modes 1 9 T 1 

9 1 Simple Operations 2 11 T 1 

UNIT II - INTERRUPTS AND TIMER 

 

10 2 PIC micro controller Interrupts 1 12 T1 

11 2 External Interrupts 1 13 T1 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

5 

 

12 2 Interrupt Programming 1 14 T1 

13 2 Loop time subroutine 1 15 T1 

14 2 Timers 1 16 T1 

15 2 Timer Programming 1 17 T1 

16 2 Front panel I/O 1 18 T1 

17 2 Soft Keys 1 19 T1 

18 2 State machines and key switches 1 20 T1 

19 2 Display of Constant and Variable strings 1 21 T1 

UNIT III - PERIPHERALS AND INTERFACING 

20 3 I2C Bus for Peripherals Chip Access 1 22 T1 

21 3 Bus operation 1 23 T1 

22 3 Bus subroutines 1 24 T1 

23 3 Serial EEPROM 1 25 T1 

24 3 Analog to Digital Converter 1 26 T1 

25 3 UART 1 27 T1 

26 3 Baud rate selection 1 28 T1 

27 3 Data handling circuit Initialization 1 29 T1 

28 3 LCD and keyboard Interfacing 2 31 T1 

29 3 ADC, DAC Sensor Interfacing 2 33 T1 

UNIT IV - INTRODUCTION TO ARM PROCESSOR 

30 4 ARM Architecture 1 34 T2 

31 4 ARM programmer‘s model 1 35 T2 

32 4 ARM Development tools 1 36 T2 

33 4 Memory Hierarchy 1 37 T2 

34 4 ARM Assembly Language Programming 1 38 T2 

35 4 Simple Examples 2 40 T2 

36 4 Architectural Support for operating 

systems 

2 42 T2 

UNIT V - ARM ORGANIZATION 

37 5 Introduction to ARM mobiles 1 43 T2 

38 5 3-Stage Pipeline ARM Organization 1 44 T2 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

6 

 

39 5 5-Stage Pipeline ARM Organization 1 45 T2 

40 5 ARM Instruction Execution 1 46 T2 

41 5 ARM Implementation 1 47 T2 

42 5 ARM Instruction Set 1 48 T2 

43 5 ARM coprocessor interface 2 50 T2 

44 5 Architectural support for High Level                                                                     

  Languages 

2 52 T2 

45 5 Embedded ARM Applications 1 53 T2 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://easyengineering.net
http://easyengineering.net


 

 

7 

 

 

INDEX 

 

 

Unit Question 

No. 

Title Page No. 

1 1-12 PART-A 9 

1 1 Features of PIC Microcontroller 10 

1 2 Architecture of PIC 16C7X 14 

1 3 Instruction set of PIC microcontroller 18 

1 4 Memory Organization of PIC 23 

1 5 Register file structure of PIC 27 

2 1-12 PART-A 31 

2 1 Interrupts in PIC 33 

2 2 Timer0 in PIC 36 

2 3 Key switching  & Delay Programming 38 

2 4 Timer programming 41 

2 5 Timer 1 and Timer 2 43 

3 1-12 PART-A 46 

3 1 LCD Interfacing with PIC 48 

3 2 Keypad interfacing with PIC 51 

3 3 ADC interfacing 54 

3 4 Sensor interfacing 59 

3 5 I2C interfacing with PIC 61 

4 1-12 PART-A 67 

4 1 ARM programmer‘s model  69 

4 2 ARM development tools 71 

4 3 Architecture of ARM 74 

4 4 Memory Hierarchy in ARM processor. 

 76 

4 5 Simple program in ARM 81 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

8 

 

Unit Question no Title Page No. 

5 1-12 PART-A 83 

5 1 3-Stage pipeline ARM organization 85 

5 2 5- Stage pipeline ARM organization 87 

5 3 Data types used for architectural support of ARM 90 

5 4 ARM coprocessor interface &ARM Instruction 

Execution 

93 

5 5 Application of ARM in the field of Embedded 

system. 

97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://easyengineering.net
http://easyengineering.net


 

 

9 

 

 

 

  UNIT-1 

INTRODUCTION TO PIC MICROCONTROLLER 

PART - A 

1. What is the difference between 8051 and PIC? 

 8051 is a 8 bit microcontroller by Motorola. It contains 128 byte of RAM, 4KB of 

ROM, four I/O ports and two timers. 

 PIC refers to Peripheral Interface Control. PIC is a Harvard architecture 

microcontroller 8 bit and 16 bit by Microchip Technology. It is based on RISC, 32 KB of 

ROM , five I/O ports and four timers. 

2. What is I/O port of PIC?  

I/O port is used to get and send the data from/to external devices.Some I/O pins have 

multifunctions.  

3. Write any four instructions of PIC microcontroller and state in a line the operation 

performed.  

MOVLW 25H ; WREG=25  

ADDLW 0X34 ; ADD 34H TO WREG  

ADDLW ; ADD 11H TO WREG  

ADDLW ; W=W+12H=7CH  

4. What is RISC?  

 RISC means Reduced Instruction set computer.  

 Small set of frequently used instructions.  

 Acess speed is high and low cost.  

5. What are the groups of instruction set in PIC micro controller?  

1. Bit oriented Instructions 2. Instructions using a literal value  

3. Byte oriented instructions 4. Table read and writes instructions  

5. Control instructions using branch and call.  

6. Using the instruction of PIC microcontroller, convert BCD to Hex.  

MOVLW 0X54  

ADDLW 0X87  

DAA.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

10 

 

 

 

9. Give the architecture of PIC 16C6x series. 

PIC16C6x series of microcontrollers uses Harvard architecture. It uses separate buses for 

accessing code and data.ie., four set of buses two each (address and data) for data and 

code  

10. Explain about watchdog timer? 

It is a timer circuit which monitors the continuous functioning of processor with respect to 

time and prevents the endless loop hanging condition.  

11. List the significance of brown out reset mode?  

When the power supply falls below a certain voltage,it causes PIC to reset.This is called as 

brown out to reset mode.  

12. List the importance of status register?  

It indicates the program status after the ALU calculations are carried out, with its bit 

position in the status register.  

13. Give the bit position of PSW.  

D0-carry, D1-Digit carry,D2-Zero,D3-power down D4-time out D5-Register bank select 

D6,D7-undefined.  

14. What is meant by PCLATH? Give its use.  

It is program counter latch. Any write to PCL will cause the contents of PCLATH to be 

transferred to PC higher locations.  

PART - B 

1. Explain about the features PIC Microcontroller. 

PIC Microcontrollers 

              PIC stands for Peripheral Interface Controller given by Microchip Technology to 

identify its single-chip microcontrollers. These devices have been very successful in 8-bit 

microcontrollers. The main reason is that Microchip Technology has continuously 

upgraded the device architecture and added needed peripherals to the microcontroller to 

suit customers' requirements.  

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

11 

 

The architectures of various PIC microcontrollers can be divided as follows. 

Low - end PIC Architectures : 

Microchip PIC microcontrollers are available in various types. When PIC microcontroller 

MCU was first available from General Instruments in early 1980's, the microcontroller 

consisted of a simple processor executing 12-bit wide instructions with basic I/O 

functions. These devices are known as low-end architectures. They have limited 

program memory and are meant for applications requiring simple interface functions and 

small program & data memories. Some of the low-end device numbers are 

 12C5XX , 16C5X,  16C505 

Mid range PIC Architectures 

Mid range PIC architectures are built by upgrading low-end architectures with more 

number of peripherals, more number of registers and more data/program memory. Some 

of the mid-range devices are 

 16C6X , 16C7X,  16F87X 

C=EPROM ; F=Flash ;RC = Mask ROM 

Popularity of the PIC microcontrollers is due to the following factors. 

1. Speed: Harvard Architecture, RISC architecture, 1 instruction cycle = 4 clock 

cycles. 

2. Instruction set simplicity: The instruction set consists of just 35 instructions (as 

opposed to 111 instructions for 8051). 

3. Power-on-reset and brown-out reset: Brown-out-reset means when the power 

supply goes below a specified voltage (say 4V), it causes PIC to reset;.  

A watch dog timer (user programmable) resets the processor if the software/program 

ever malfunctions and deviates  from its normal operation. 

4. PIC microcontroller has four optional clock sources: 

   Low power crystal 

  Mid range crystal 

  High range crystal 

  RC oscillator (low cost). 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

12 

 

5. Programmable timers and on-chip ADC. 

6. Up to 12 independent interrupt sources. 

7. Powerful output pin control (25 mA (max.) current sourcing capability per pin.) 

8. EPROM/OTP/ROM/Flash memory option. 

9.  I/O port expansion capability. 

 

 

 

 

 

 

CPU Architecture: 

 

 

The CPU uses Harvard architecture with separate Program and Variable (data) memory 

interface. This facilitates instruction fetch and the operation on data/accessing of 

variables simultaneously. 

 

 

 

 

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

13 

 

 

 

Pipelining of instruction fetch successive addressing 

     

 Fig:Introduction of extra cycle for a jump/goto instruction 

 

   Fig: fetching cycle 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

14 

 

 

 

2.Explain about the Architecture of PIC 16C7X  with necessary diagrams.  

 

 The PICI6C72 is a low-power, high-performance CMOS 8-bit microcomputer with 2K 

bytes Flash programmable and erasable read only memory (PEROM).  PICI6C72 is a 

powerful microcomputer, which provides a highly flexible and cost-effective solution to 

many embedded control application.  

ARCHITECTURE OF PIC 16C72 MICRO CONTROLLER: - 

  The PIC16C7X belongs to the Mid-Range family of the PIC micro devices.  

The program memory contains 2K words, which translate to 2048 instructions, since each 

14-bit program memory word is the same width as each device instruction. The data 

memory (RAM) contains 128 bytes. There are 22 I/O pins that are user configurable on a 

pin-to-pin basis. Some pins are multiplexed with other device functions. 

These functions include: 

*External interrupt *Change on PORTB interrupts    *Timer0 clock input 

        *Timer1 clock/oscillator     *Capture/Compare/PWM            *A/D converter 

                       *SPI/I2C                         *Low Voltage Programming   *Incircuit Debuuger 

 

 

 

PIN DESCRIPTION: 

RA0 - RA5: 

 These are the bi-directional Input / output PORTA pins. 

 RA1, RA2, are the analog inputs 1, analog input2. 

 RA3 can also be analog input3 or analog reference voltage. 

 RA4 can also be the clock input to the Timer0 module. Output is open drain type. 

  RA5 can also be analog input4 or the slave select for the synchronous serial port. 

RB0 – RB7: 

 These are the bi-directional I/O  PORTB  pins. PORTB can be software  

 programmed for internal weak pull-up on all inputs. 

 RB0/IN is the external interrupt pin. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

15 

 

 RB1, RB2, RB3 are the bi-directional pins.  

 RB4 is the Interrupt-on-change pin. 

 RB5 is the Interrupt-on-change pin. 

 RB6/PGC is the Interrupt-on-change pin. Serial programming clock. 

 RB7/PGD is the Interrupt-on-change pin. Serial programming data. 

RC0 – RC7: 

 These are the bidirectional Input / Output PORTC pins. 

  RC0/T1OSO/ T1CK. RC0 can also be the Timer1 oscillator output or Timer1  

Clock input. 

  RC1/T1OSI is the Timer1 oscillator input. 

  RC2/CCP is the Capture1 input/Compare1 output/ PWM1 output. 

  RC3/SCK/SCL. RC3 can also be the synchronous serial clock input/output for  

 Both SPI and I2C modes. 

 RC4/SDI/SDA is the SPI Data In (SPI mode) or Data I/O (I2C mode). 

 RC5/SDO is e the SPI Data Out (SPI mode). 

Power Control/Status Register (PCON): 

 The Power Control/Status Register, PCON, has two bits to indicate the type of 

RESET that last occurred. Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on 

a Power-on Reset.  

Power-on Reset (POR): 

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 

1.2V - 1.7V).  

Watchdog Timer (WDT): 

  Watchdog Timer is a free running, on-chip RC oscillator that does not require any 

external components. This RC oscillator is separate from the RC oscillator of the SC1/CLKI 

pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/ 

CLKO pins of the device has been stopped, for example, by execution of a SLEEP 

instruction. 

Power-up Timer (PWRT): 

The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as 

long as the PWRT is active. The PWRT‘s time delay allows VDD to rise to an acceptable 

level.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

16 

 

Brown-out Reset (BOR): 

The configuration bit, BOREN, can enable or disable the Brown-out Reset circuit.If VDD 

falls below VBOR for less than TBOR, a RESET may not occur.  

PIN DESCRIPTION: 

 

PORTA and the TRISA Register: 

 PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register 

is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., 

put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) 

will make the corresponding PORTA pin an output (i.e., put the contents of the output latch 

on the selected pin 

 

PORTB and the TRISB Register: 

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is 

TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put 

the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will 

make the corresponding PORTB pin an output (i.e., put the contents of the output latch on 

the selected pin). 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

17 

 

ARCHITECTURE DIAGRAM OF PIC 16C72: 

PORTC and the TRISC Register: 

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is 

TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put 

the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will 

make the corresponding PORTC pin an output (i.e., put the contents of the output latch on 

the selected pin). PORTC is multiplexed with several peripheral functions. PORTC pins 

have Schmitt Trigger input buffers. 

Capture Mode: 

 In Capture mode, CCPR1H: CCPR1L captures the 16-bit value of the TMR1 register 

when an event occurs on pin RC2/CCP1. An event is defined as: 

•   Every falling edge  •   Every rising edge 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

18 

 

•   Every 4th rising edge  •  Every 16th rising edge 

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture 

is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in 

software. If another capture occurs before the value in register CCPR1 is read, the old 

captured value is overwritten by the new captured value. 

Compare Mode: 

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the 

TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:  

•  Driven High •  Driven Low •  Remains Unchanged 

The action on the pin is based on the value of control bits . 

 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE: 

 The analog-to-digital (A/D) converter module has five inputs for the PIC16C7X. The 

A/D allows conversion of an analog input signal to a corresponding 8-bit digital number.  

The A/D module has three registers: 

 •  A/D Result Register ADRES 

 •  A/D Control Register 0 ADCON0 

 •  A/D Control Register 1 ADCON1 

OSCILLATOR CONFIGURATIONS: 

The PIC16C7X can be operated in four different Oscillator modes. The user can program 

two configuration bits (FOSC1 and FOSC0) to select one of these four Modes: 

 •   LP Low Power Crystal •   XT Crystal/Resonator 

 •   HS High Speed Crystal/Resonator •   RC Resistor/Capacitor 

3. Explain the instruction set of PIC microcontroller.  

INSTRUCTION   SET  

 While writing the instructions the following guidelines are followed. 

a) Write the instructions mnemonics in lower case (example: xorwf) 

b) Write special Register names, RAM variable names and bit names in upper case 

(example: STATUS, RPO….) 

c) Write instruction and subroutine labels in mixed case (example: Mainline, LoopTime..) 

The instruction set of PIC is divided into Three based on size. They are 

(a) Byte oriented Instructions 

(b) Bit oriented Instructions 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

19 

 

(c) Literal and Control Instructions 

Byte Oriented Instructions 

 In a byte oriented Instructions   f   represents a file register  and  d  represents  destination 

register.The destination specifies where the result of operation is to be placed. If D= 0 the 

result is placed in W register(Accumulator) and if d = 1  , the result is placed in the file 

register specified  in the instruction.  

                                       ADDWF f, d                  ;  Add  W and  f  

                                        CLRF  f                         ; Clear f 

                                         MOVWF f ,d                ; Move f  

                                         NOP                             ; No operation   

                                        SUBWF  f ,d                 ; Subtract W from f 

 

Bit Oriented Instruction 

In bit oriented instructions, b represents a bit field designator which selects the number of 

the bit affected by the operation and f represents the number of the file in which the bit is 

located. 

 

                                              BCF f , b                      ; Bit clear f  

                                              BSF   f, b                     ; Bit set f  

                                              BTFSC    f , b              ; Bit test f ,skip if  set 

 

Literal and Control Instrucrtions 

In literal and control instructions  K represents an 8 or 11 bit constant or literal value. 

                                        ADDLW   k   ; Add literal and W  

                                        ANDLW   k   ; AND   literal with W 

                                        CALL k         ; Call subroutine  

                                        MOVLW k     ;  Move  literal to W  

                                        SUBLW k       ; Subtract W from literal 

Based on the type of operation PIC supports various Instructions. They are explained 

below. 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

20 

 

CLASSIFICATION OF INSTRUCTIONS   

All the instructions of the PIC microcontroller are classified into nearly 9 groups. They are 

given below with examples. 

(i).Arithmetic Operations : 

       ADDLW   k   ;   Add literal value k to W 

       ADDWF  f, d  ;  The contents of the  W register are added with the register f.     

       SUBWF f ,d   ; the contents of  W register are subtracted from register f  

(ii).Logical Instructions : 

     ANDLW  k  ; The contents of W register are ANDED with the 8-bit litweral k .The result   

                              is stored in the W register. 

     IORLW  k  ;Inclusive OR the literal value into W register 

     XORWF  f,d  ; The contents of W register are XORed with register f and the result is  

   stored in W or   f. 

      COMF f, d    ;     Complement f . 

(iii).Increment/Decrement Instructions  

      INCF  f ,d  ; Increment contents of f register by 1 

     DECF f , d  ; Decrement  f by 1 

(iv).Data Transfer instructions : 

      MOVF f,d   ; Move f to W  i.e  The contents of register f is moved to a destination 

depending on d 

MOVLW  k ; Move literal k to W 

MOVWF f ;  Move W to f 

(v) Clear Instructions  

     CLRF  ;Clear file f  

    CLR W  ; Clear the contents of W register and zero bit is set 

    CLRWDT   ;  Clear Watch dog timer 

    BCF  ; Clear bit b of register f. 

(vi)Rotate Instructions  

     RLF   ;   Rotate Left f through carry 

    RRF   ;   Rotate Right f  through carry 

(vii). Branch Instructions : There are two types of Branch instructions.(i)Conditional 

Branch and (ii) Un conditional Branch instructions. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

21 

 

(i)  Conditional Branch Instructions  

   BTFSC  f , b    ;  Bit Test skip if clear 

   BTFSS f , b    ; Bit test f , skip if set  

   DECFSZ f,d   ;  Decrement f ,skip if zero. 

   INCFSZ  f,d  ;Increment f ,skip if zero  

(ii) Unconditional Instructions 

  CALL k  ; Call the subroutine  k unconditionally 

   GOTO k   ; Unconditional k branch 

   RETURN  ; Return from subroutine  

  REETLW k  ;  Return with literal in W register. 

(viii Miscellaneous  

        BSF  f,b  ; Set bit b of register f  

        SLEEP   ; Go into stand  by mode 

        NOP       ; No operation i.e Do nothing , wait one clock cycle. 

The various instructions used in PIC are presented in the Table below. 

 

Single-bit manipulation                   Operation 

             bcf                   PORTB, 0 

             bsf                   STATUS, C 

Clear bit 0 of PORTB 

Set the carry bit 

Clear/move 

             Clrw 

             clrf                    TEMP1 

            movlw                    5 

            movlw                  10 

 

            movwf                 TEMP1 

            movwf                 TEMP1, F 

             movf                   TEMP1, W 

            swapf                   TEMP1, F 

            swapf                   TEMP1, W 

Clear the working register, W 

Clear temporary variable TEMP1 

Load 5 into W 

Load D ‗10‘ or H ‗10‘ into W 

depending upon default representation 

Move W into TEMP1 

Incorrect syntax 

Move TEMP1 into W 

Swap 4-bit nibbles of TEMP1 

Move TEMP1 to W, swapping nibbles 

and leave TEMP1 unchanged 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

22 

 

Increment/decrement/complement 

             incf                       TEMP1, F 

             incf                       TEMP1, W 

             decf                      TEMP1, F 

             comf                     TEMP1, F 

Increment TEMP1 

W < - TEMP1 + 1; TEMP1 unchanged 

Decrement TEMP1 

Change 0s to 1s and 1s to 0s 

Multiple-bit manipulation 

            andlw                    B‘00000111‘ 

            andwf                      TEMP1, F 

             andwf                     TEMP1, W 

              iorlw                     B‘00000111‘ 

              iorwf                     TEMP1, F 

              xorlw                    B‘00000111‘ 

              xorwf                      TEMP1, W 

Force upper 5 bits of W to zero 

TEMP1 < - TEMP1 and W 

W < - TEMP1 AND W 

Force lower 3 bits of W to one 

TEMP1 < - TEMP1 or W 

Complement lower 3 bits of W 

W < - TEMP1 XOR W 

Addition/Subtraction  

              addlw                           5 

              addwf                     TEMP1, F 

              sublw                          5 

              subwf                      TEMP1, F 

Add 5 to W 

TEMP1 < - TEMP1 + W 

W < - 5 – W (not W < - W – 5!) 

TEMP1 < - TEMP1 – W 

Rotate 

                rlf                         TEMP1, F 

 

 

                rrf                        TEMP1, W 

Nine-bit left rotate through C 

(C < - TEMP1, 7; TEMP1, I+1 < - TEMP1, I 

 TEMP1, 0 < - C) 

 Leave TEMP1 unchanged 

copy to W and rotate W right through C 

Conditional branch 

               btfsc                      TEMP1, 0 

 

               btfss                      STATUS, 

C 

              decfsz                     TEMP1 , F 

              incfsz                      TEMP1, W 

Skip the next instruction if bit 0 of 

TEMP1 equals zero 

Skip if C = 1 

Decrement TEMP1; skip if zero 

Leave TEMP1 unchanged; skip if 

TEMP1 = H‘FF‘; W< - TEMP1 + 1 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

23 

 

Goto/call/return/return from interrupt 

               goto                         There 

 

                  call                          Task1 

 

                  return 

                  retlw                          5 

                  retfie 

Next instruction to be executed is 

 labeled ―There‖ 

Pushed return address; next instruction 

to be executed is labeled ―Task1‖ 

Pop return address off of stack 

Pop return address; W < -5 

Pop return address; reenable interrupts 

Miscellaneous   

                 Clrwdt 

 

                 sleep  

                   

                  nop 

If watchdog timer is enabled, this; instruction 

will reset it (before it,;resets the CPU) 

Stop clock; reduce power; wait,;for watchdog 

timer or external signal;to begin program 

execution again ; 

Do nothing; wait one clock cycles 

 

 

4. With a neat diagram discuss in detail about memory organization of a PIC 

microcontroller.  

Memory of the PIC16F877 divided into 3 types of memories: 

 Program Memory - A memory that contains the program , after the user write it. 

Program Counter executes commands stored in the program memory, one after the 

other. 

 Data Memory – This is RAM memory type, which contains a special registers like SFR 

(Special Faction Register) and GPR (General Purpose Register). The variables that we 

store in the Data Memory during the program are deleted after we turn of the micro. 

 Data EEPROM (Electrically Erasable Programmable Read-Only Memory) - A 

memory that allows storing the variables as a result of burning the written program. 

Each one of them has a different role. Program Memory and Data Memory two 

memories that are needed to build a program, and Data EEPROM is used to save data 

after the microcontroller is turn off.Program Memory and Data EEPROM they are non-

www.EasyEngineering.net

http://www.microcontrollerboard.com/pic_memory_organization.html#DataMem
http://www.microcontrollerboard.com/pic_memory_organization.html#DataEEMem
http://easyengineering.net
http://easyengineering.net


 

 

24 

 

volatile memories, which store the information even after the power is turn off. These 

memories called Flash or EEPROM.  

(i) PROGRAM MEMORY: 

 PIC16F87XA devices have a 13-bit program counter capable of addressing an 8K word 

x 14 bit program memory space. This memory is used to store the program after we 

burn it to the microcontroller. 

 Program Counter (PC) keeps track of the program execution by holding the address of 

the current instruction. It is automatically incremented to the next instruction during the 

current instruction execution. 

 PIC16F87XA family has a 13-bit wide hardware stack. The stack space is not part of 

either program or data space and the stack pointer is not readable or writable. In the 

PIC microcontrollers, this is a special block of RAM memory used only for this purpose. 

 The CALL instruction is used to jump to a subroutine, which must be terminated with 

the RETURN instruction. CALL has the address of the first instruction in the subroutine 

as its operand. When the CALL instruction is executed, the destination address is 

copied to the PC. The PC is PUSHed onto the stack when a CALL instruction is 

executed, or an interrupt causes a branch. The stack is POP‘ed in the event of a 

RETURN, RETLW or a RETFIE instruction execution. 

 The stack operates as a circular buffer. This means that after the stack has been 

PUSHed eight times, the ninth push overwrites the value that was stored from the first 

push. The tenth push overwrites the second push (and so on). 

 Each time the main program execution starts at address 0000 - Reset Vector. The 

address 0004 is ―reserved‖ for the ―interrupt service routine‖ (ISR). Program Memory is 

divided into pages, where the program is stored. Data Memory is divided into 

banks. The banks are located inside the RAM, where the special registers and the data 

located 

(ii) Data Memory : 

 The data memory is partitioned into multiple banks which contain the General Purpose 

registers and Special Function Registers.  Number of banks may vary depending on the 

microcontroller; for example, micro PIC16F84 has only two banks. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

25 

 

 Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are 

reserved for the Special Function Registers. Above the Special Function Registers are 

General Purpose Registers, implemented as static RAM.  

 To access a register that is located in another bank, one should access it inside the 

program. There are special registers which can be accessed from any bank, such as 

STATUS register. 

In order to start programming and build automated system, the important registers of the 

memory map are: 

 STATUS register – changes/moves from/between the banks 

 PORT registers – assigns logic values (―0‖/‖1‖) to the ports 

 TRIS registers - data direction register (input/output) 

Status Register 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

IRP 
RP

1 

RP

0 
TO PD Z DC C 

BIT  7: 

 IRP: Register Bank Select bit (used for indirect addressing) 

  0 = Bank 0, 1 (00h - FFh) 

  1 = Bank 2, 3 (100h - 1FFh) 

  The IRP bit is not used by the PIC16F8X. IRP should be maintained clear.  

  BIT  6-5:  

RP1:RP0: Register Bank Select bits (used for direct addressing) 

  00 = Bank 0 (00h - 7Fh) 

  01 = Bank 1 (80h - FFh) 

  10 = Bank 2 (100h - 17Fh) 

  11 = Bank 3 (180h - 1FFh) 

BIT  4: 

TO: Time-out bit 

  1 = After power-up, CLRWDT instruction, or SLEEP instruction 

  0 = A WDT time-out occurred 

 

www.EasyEngineering.net

http://www.microcontrollerboard.com/pic_memory_organization.html#StatReg
http://www.microcontrollerboard.com/pic_memory_organization.html#PortReg
http://www.microcontrollerboard.com/pic_memory_organization.html#TrisReg
http://easyengineering.net
http://easyengineering.net


 

 

26 

 

 BIT  3: 

PD: Power-down bit 

  1 = After power-up or by the CLRWDT instruction 

  0 = By execution of the SLEEP instruction 

 BIT  2: 

Z: Zero bit 

  1 = The result of an arithmetic or logic operation is zero 

  0 = The result of an arithmetic or logic operation is not zero 

BIT  1: 

DC: Digit carry/borrow 

  1 = A carry-out from the 4th low order bit of the result occurred 

  0 = No carry-out from the 4th low order bit of the result bit    

BIT  0:  

C: Carry/borrow 

  1 = A carry-out from the most significant bit of the result occurred 

  0 = No carry-out from the most significant bit of the result occurred 

Direct Addressing: 

  Using this method we are accessing the registers directly by detecting 

location inside Data Memory from Opcode and by selecting the bank using bits RP1 and 

RP0 of the STATUS register. 

Indirect Addressing: 

  To implement indirect addressing, a File Select Register (FSR) and indirect 

register (INDF) are used. In addition, when using this method we choose bank using bit 

IRP of the STATUS register. Indirect addressing treated like a stack pointer, allowing much 

more efficient work with a number of variables. INDF register is not an actual register is a 

virtual register that is not found in any bank. 

 The role of the PORT register is to receive the information from an external source 

(e.g. sensor) or to send information to the external elements (e.g. LCD). The 28-pin 

devices have 3 I/O ports, while the 40/44-pin devices, like PIC16F877, have 5 I/O ports 

located in the BANK 0. 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

27 

 

PORT  REGISTERS: 

1. PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register 

is TRISA.Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input. 

Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output. 

2. PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register 

is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input. 

Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output. 

3. PORTC is an 8-bit wide, bidirectional port. The corresponding data direction register 

is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input. 

Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output. 

4. PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually 

configurable as an input or output. 

5. PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7) which are 

individually configurable as inputs or outputs. These pins have Schmitt Trigger input 

buffers. 

 

(iii)Data EEPROM 

The data EEPROM and Flash program memory is readable and writable during normal  

  operation (over the full VDD range). This memory is not directly mapped in the register file 

  space. Instead, it is indirectly addressed through the Special Function Registers. 

There are six SFRs used to read and write to this memory: 

EECON1 EECON2 EEDATA  

EEDATH EEADR EEADRH 

When interfacing to the data memory block, EEDATA holds the 8-bit data for 

read/write and EEADR holds the address of the EEPROM location being accessed. 

These devices have 128 or 256 bytes of data EEPROM (depending on the device), with 

an address range from 00h to FFh. 

5.Explain in detail about register file structure  in PIC microcontroller. 

 In PIC Microcontrollers  the Register File consists of two parts namely 

a) General Purpose Register File   b)Special Purpose Register File 

a) General Purpose Register File: 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

28 

 

The general purpose register file is another name for the microcontroller‘s RAM . 

Data can be written to each 8-bit location updated and retrieved any number of times.  

b) Special Purpose Register File: 

The special function register file consists of input, output ports and control registers 

used to configure each 8-bit port either as input or output. It contains registers that provide 

the data input and data output to a chip resources like Timers, Serial Ports and Analog to 

Digital converter and also the registers that contains control bits for selecting the mode of 

operation and also enabling or disabling its operation.  

CPU REGISTERS  

 The CPU registers   are used in the execution of the instruction of the PIC 

microcontroller. The PIC PIC16F877  Microcontroller has the following registers. 

1. Working Register-W  (Similar to Accumulator) 

2. Status  Register 

3. FSR – File Select Register (Indirect Data memory address pointer) 

4. INDF 

5. Program Counter  

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

29 

 

1. Working Register: 

Working Register is used by many instructions as the source of an operand. It also 

serves as the destination for the result of instruction execution and it is similar to 

accumulator in other cs and ps.  

2.Status Register: 

This is an 8-bit register which denotes the status of ALU after any arithmetic 

operation and also  RESET status and the bank select bits for the data memory. 

 

C: Carry/borrow bit    DC: Digit carry/borrow bit    Z: Zero bit 

NOT_PD  :  Reset Status bit (Power-down mode bit) 

NOT_TO  :   Reset Status bit (tme- out bit) 

RPO: Register bank Select 

 The bits 7 and 6 of Status Register are unused by 16c6x/7x. The ‗C‘ bit is set when 

two 8-bit operands are added together and a 9-bit result occurs. This 9-bit is placed in the 

carry bit.The DC or Digit carry bit indicates that a carry from the lower 4 bits occurred 

during an 8-bit addition. 

The reset status bits NOT_TO and NOT_PD are used in conjunction with PIC‘s 

sleep mode. The micro controller can put itself to sleep mode to save power during 

intervals when it has nothing to do. It can be reset by any of three kinds. Upon reset the 

CPU can check these two reset status bits to determine which kind of event resettled it and 

then respond accordingly. 

The Register bank select bit RPO is used to select either bank or bank.When 

RPO=0, select Bank 0, RPO=1, select Bank 1. 

Example:   bcf STATUS, RPO  ; Select bank 0 

  bsf STATUS, RPO  ; Select bank 1. 

3.FSR – (File Select Register): 

It is the pointer used for indirect addressing. In the indirect addressing mode the 8-

bit register file address is first written into FSR. It is a special purpose register that serves 

as an address pointer to any address through out the entire register file. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

30 

 

4.INDF – (Indirect File): 

It is not a physical register addressing but  this INDF will cause indirect addressing. 

Any instruction using the INDF register actually access the register pointed to by the FSR. 

5 .PROGRAM COUNTER  

            PIC PIC16F877A has a 13 bit program counter in which PCL is the lower 8-bits of 

the PC and PCLATH is the write buffer for the upper 5  bits of the PC. 

 

PCLATH (program counter Latch can be read or from or written to without affecting the 

Program Counter(PC).The upper 3 bits of PCLATH remain zero.It is only when PCL is 

written to that PCLATH is automatically written into the PC at the same time. 

www.EasyEngineering.net

      

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

http://easyengineering.net
http://easyengineering.net


 

 

31 

 

                                      UNIT- II 

     INTERRUPTS AND TIMERS 

1. What is hardware and software interrupts? 

PIC Microcontroller consists of both Hardware and Software Interrupts. If the 

interrupts are generated by external hardware at certain pins of microcontroller, or by 

inbuilt devices like timer, they are called Hardware Interrupts. While Software interrupts 

are generated by a piece of code in the program. Also known as external and internal 

interrupts. 

2. What are the interrupts available in PIC? 

   Interrupt Source   Enabled by   Completion Status 

External interrupt from  INT   INTE = 1  INTF = 1 

TMR0 interrupt     T0IE = 1  T0IF = 1 

RB4–RB7 state change    RBIE = 1   RBIF = 1 

EEPROM write complete   EEIE = 1   

3. What are the features of timer0? 

  The Timer0 module timer/counter has the following features: 

 8-bit timer/counter 

 Readable and writable 

 8-bit software programmable prescaler 

 Internal (4 Mhz) or external clock select 

 Interrupt on overflow from FFh to 00h 

 Edge select (rising or falling) for external clock 

4. What are the features of timer 1? 

 The Timer1 module, timer/counter, has the following features: 

 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) 

 readable and writable 

 8-bit software programmable prescaler 

 Internal (4 Mhz) or external clock select 

 Interrupt on overflow from FFFFh to 0000h 

5. What are the features of timer 2? 

 The Timer2 module, timer/counter, has the following features: 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

32 

 

 two 8-bit registers (TMR2 and PR2) 

 readable and writable 

 a prescaler and a postscaler 

 Connected only to an internal clock - 4 MHz crystal 

 Interrupt on overflow 

6. What is state machine model. 

When an ‗A‘ is detected in the stream in state 0, the machine makes a transition 

from state 0 to state 1, following the edge in the direction of the arrow. If a ‗B‘ is detected in 

state 1, a transition is made to state 0. Since the state machine can only occupy one state 

at a time, the active state indicates whether the last character detected was either ‗A‘ or ‗B‘. 

Conceivably, another character could be received (‗C‘), in which case no transition occurs. 

7. What is key switch? 

Push button switch is connected to the first bit of PORT D (RD0) which is 

configured as an input pin. Which is connected to a pull up resistor such that this pin is at 

Vcc potential when the switch is not pressed. When the switch is pressed this pin RD0 will 

be grounded. The LED is connected to the first bit of PORT B (RB0) and a resistor is 

connected in series with it to limit the current. 

8.Multiply the following two unsigned bytes 81H and 04H and save the result in 

registers 10H and 11H respectively.  

MOVLW 0X81 

MULLW 0X04 

MOVFF PRODL, 0X10 

MOVFF P\RODH, 9X11. 

9. What are the issues in front panel I/O? 

Conversion number entered digit by digit from keypad to binary equivalent 

Display of fixed variable strings 

 

10. Give the timer 1 registers 

TMR1 consists of two 8-bits registers:  

 TMR1H 

 TMR1L 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

33 

 

    PART-B 

1. Explain the concepts of interrupts in detail. 

Interrupts vs. polling  

A single microcontroller can serve several devices. There are two methods by which 

devices receive service from the microcontroller: interrupts or polling. In the Interrupt 

method, whenever any device needs the microcontroller's service, the device notifies it by 

sending an interrupt signal. Upon receiving an interrupt signal, the microcontroller stops 

whatever it is doing and serves the device. The program associated with the interrupt is 

called the interrupt service routine (ISR) or interrupt handler. 

In polling, the microcontroller continuously monitors the status of a given device; 

when the status condition is met, it performs the service. After that, it moves on to monitor 

the next device until each one is serviced.  

 The polling method cannot assign priority because it checks all devices in a round-

robin fashion. More importantly, in the interrupt method the microcontroller can also ignore 

(mask) a device request for service.  

Interrupt service routine  

 For every interrupt, there must be an interrupt service routine (ISR), or 

interrupt handler. When an interrupt is invoked, the microcontroller runs the interrupt 

service routine. Generally, in most microprocessors, for every interrupt there is a 

fixed location in memory that holds the address of its ISR. 

Steps in executing an interrupt  

  Upon activation of an interrupt, the microcontroller goes through 

the following steps:  

1. It finishes the instruction it is executing and saves the address of the 

next instruction (program counter) on the stack.  

2. It jumps to a fixed location in memory called the interrupt vector 

table. The interrupt vector table directs the microcontroller to the address of the 

interrupt service routine (ISR). 

 3. The microcontroller gets the address of the ISR from the interrupt 

vector table and jumps to it. It starts to execute the interrupt service subroutine 

until it reaches the last instruction of the subroutine, which is RETFIE (return 

from interrupt exit).  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

34 

 

4. Upon executing the RETFIE instruction, the microcontroller returns to 

the place where it was interrupted. First, it gets the program counter (PC) 

address from the stack by popping the top bytes of the stack into the PC. Then it 

starts to execute from that address.  

Sources of interrupts in the PIC18  

There are many sources of interrupts in the PIC 18, depending on 

which peripheral is incorporated into the chip. The following are some of the 

most widely used sources of interrupts in the PIC 18: 

 I. There is an interrupt set aside for each of the timers, Timers 0, 1, 2, 

and so on. 

2. Three interrupts are set aside for external hardware interrupts. Pins 

RBO (PORTB.O), RBI (PORTB.J), and RB2 (PORTB.2) are for the external 

hard- ware interrupts INTO, INTI, and INT2, respectively. 

3. Serial communication's USART has two interrupts, one for receive 

and another for transmit. 

4. The PORTB-Change interrupt.  

5. The ADC (analog-to-digital converter).  

6. The CCP (compare capture pulse-width-modulation). 

INTCON 

Bit 7 (GIE) is the global interrupt enable, which is the master switch for all 

interrupts. Turn it off and no interrupts are enabled (regardless of the state of their 

individual enable bits). Turn it on and interrupts whose individual enable bits are set will be 

enabled. 

Bit 6 (PEIE) is a mini-master switch for a group of interrupts which are known as 

‗peripheral interrupts‘. These interrupts have their own enable bits in the PIE1 register. 

Therefore, in order to use these interrupts you have to enable three bits –the individual 

enable bit in PIE1, this bit, and the global interrupt enable. 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

35 

 

 

Bit 5 (T0IE) to use the TMR0 overflow interrupt – this simply triggers an interrupt 

whenever TMR0 overflows from 255 to 0. In the interrupt service routine you can test bit 2 

(T0IF) to see if a TMR0 overflow interrupt has occurred 

Bit 4 (INTE) controls the ‗External Interrupt‘ which depends on the state of the pin 

labelled INT (GP2). The interrupt can be set to trigger on the rising edge orfalling edge of 

the signal on this pin. This is done using bit 6 of the OPTION register: if bit 6 of OPTION is 

clear, the INT interrupt will occur on the falling edge of the INT pin. If bit 6 of OPTION is 

set, the INT interrupt will occur on the risingedge. 

Bit 3 (GPIE) of the INTCON register controls the GPIO change inter-rupt. This 

interrupt can trigger when any one of the GPIO pins changes. To use this interrupt you 

need to set this bit, and also select which GPIO pin should be able to trigger the interrupt. 

This is done with the IOC (Interrupt OnChange) reg-ister. 

Enabling and disabling an interrupt  

Upon reset, all interrupts are disabled (masked), meaning that none will be 

responded to by the microcontroller if they are activated. The interrupts must be enabled 

(unmasked) by software in order for the microcontroller to respond to them. The D7 bit of 

the INTCON (Interrupt Control) register is responsible forenabling and disabling the 

interrupts globally. shows the INTCON register. The GIE bit makes the job of disabling all 

the interrupts easy. With a single instruction (BCF INTCON,GIE), we can make GIE = 0 

during the operation of a critical task.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

36 

 

PROGRAMMING EXTERNAL HARDWARE INTERRUPTS  

The PIC 18 has three external hardware interrupts. Pins RBO (PORTB.O), RBI 

(PORTB.l), and RB2 (PORTB.2), designated as INTO, INTI, and INT2 respectively, are 

used as external hardware interrupts.  

External interrupts INTO, INT1, and INT2  

There are three external hardware interrupts in the PIC IS: INTO, INTI, and INT2. 

They are located on pins RBO, RBI, and RB2, respectively. On default, all three hardware 

interrupts are directed to vector table location 0008H, unless we specify otherwise. They 

must be enabled before they can take effect.  

2. Explain the Timers of PIC microcontroller in detail. 

he PIC18 has two to five timers depending on the family member. They are 

referred to as Timers 0, I, 2, 3, and 4. They can be used either as timers to generate a time 

delay or as counters to count events happening outside the microcontroller.  

PROGRAMMING TIMERS 0 AND 1  

Every timer needs a clock pulse to tick. The clock source can be internal or 

external. If we use the internal clock source, then 1 /  4th of the frequency of the crystal 

oscillator on the OSC1 and OSC2 pins (Fosc/4) is  fed into the timer.  

Therefore, it is used for time delay generation and for that reason is called a 

timer. By choosing the external clock option, we feed pulses through one of the PIC18's 

pins: this is called a counter. In this section we discuss the PIC 18 timer and in the next 

section we program the timer as a counter.  

 

 

Basic registers of the timer : 

Many of the PIC 18 timers are 16 bits wide. Because the PIC 18 has an 8-bit 

architecture, each 16-bit timer is accessed as two separate registers of low byte (TMRxL) 

and high byte (TMRxH). Each timer also has the TCON (timer control) register for setting 

modes of operation. Next, we discuss each timer separately.  

Timer0 registers and programming  

Timer0 can be used as an 8-bit or a 16-bit timer. The 16-bit register of TimerO is  

accessed as low byte and high byte, as shown in  Figure 9-1. The low-byte register is 

called TMROL (TimerO low byte) and the high-byte register is referred to as TMROH 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

37 

 

(TimerO high byte). These registers can be accessed like any other special function 

registers. For example, the instruction "MOVWF  TMROL" moves the value in WREG into 

TMROL, the low byte of TimerO. These registers can also be read like any other register. 

For example, "MOVFF  TMROL,  PORTE" copies TMROL (low byte ofTimerO) to PORTB. 

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 

 

Fig: Timer 0  High & Low register 

TOCON (TimerO control) register  

Each timer has a control register, called TCON, to set the various timer operation 

modes. TOCON is an 8-bit register used for control of TimerO. 

TMROON TOBBIT TOGS TOSE PSA TOPS2 TOPS1 TOPSO 

    Fig: Timer 0     TCON register 

TMROON  D7 : TimerO ON and OFF control bit  

   I = Enable (start) TimerO  

   0 = Stop TimerO 

TOSBIT  D6 : TimerO 8-bit/16-bit selector bit  

   I = TimerO is configured as an 8-bit timer/counter.  

   0 = TimerO is configured as a 16-bit timer/counter. 

TOCS  D5   : TimerO clock source select bit  

   I = External clock from RA4/TOCKI pin  

   0 =Internal clock (Fosc/4 from XTAL oscillator)  

TOSE  D4   : TimerO source edge select bit  

   l = Increment on H-to-L transition on TOCKI pin  

   0 =Increment on L-to-H transition on TOCKI pin  

PSA  D3  :  TimerO prescaler assignment bit  

   I = TimerO clock input bypasses prescaler.  

   0 = TimerO clock input comes from prescaler output.  

TOPS2TOPS1TOPSO   D2DIDO    TimerO prescaler selector  

0 0 0 = I :2  Prescale value (Fosc / 4 / 2)  

0 0 I = I :4  Prescale value (Fosc / 4 / 4)  

0 I 0 = I :8  Prescale value (Fosc / 4 / 8)  

0 I I= 1:16  Prescale value (Fosc / 4 / 16)  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

38 

 

I 0 0 = I :32  Prescale value (Fosc / 4 / 32)  

I 0 I = I :64  Prescale value (Fosc / 4 / 64)  

l I 0 =I: 128  Prescale value (Fosc / 4 / 128)  

I I I = I :256  Prescale value (Fosc / 4 / 256) 

Eg.  To find the value for TOCON if we want to program TimerO in 16-bit mode, 

no prescaler. Use Pic18's Fosc/4 crystal oscillator for the clock source, increment on 

positive-edge.  

TOCON = 0000 1000  16-bit, Fosc/4 clock source, no prescaler, TimerO off 

Steps to program 8-bit mode of TimerO  

To generate a time delay using TimerO in 8-bit mode, take the following steps:  

I.  Load the TOCON value register indicating 8-bit mode is selected.  

2.  Load the TMROL registers with the initial count value.  

3.  Start the timer.  

4.  Keep monitoring the timer flag (TMROIF) to see if it is raised. Get out of the  

loop when TMROIF becomes HIGH.  

5.  Stop the timer with the instruction "BCF  TO CON,  TMROON".  

6.  Clear the TMROIF flag for the next round.  

7.  Go back to Step 2 to load TMROL again. 

 

 

3 .(a) Give detailed note on state machines and key switches in PIC microcontroller.  

 Key switches are not very fast they can be checked each time around the main loopin a 

keyswitch subroutine. Recall the looptime 10ms was selected because the maximum 

keybounce time of mechanical key switches is less than 10 ms.  

 Consequently if key switches detects a new key is pressed, it can be assured that next 

time it is called 10 ms later. 

 The press and release of key switchesoccur over an interval of many tens of 

milliseconds. If key is pressed and releases relatively fast rate of four times per second 

the switch may be closed for 12 looptimes.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

39 

 

 The key switch subroutine will use the state variable called KEYSTATE to keep track 

from one call to next of the following tasks. 

 Debounce the keyswitch 

 Determine which key is pressed 

 Take appropriate action once for that press of key 

 Wait for the release of that key 

  Each time keyswitch is called , if no key has been pressed during last 

several calls then Keystate will equal to zero. The job of key switch subroutine is to 

determine whether any new key pressed 

If Z=1 a return from keyswitch subroutine occurs & If Z=0 a key is newly pressed. 

So Keystate is incremented to H‘01‘ before returning the subroutine. 

Ten ms later keyswitch subroutine is reentered this time with keystate= H‘01‘ if a 

key is detected last time. By now the key bounce is settled out. A scankey subroutine is 

called. It returns Z=1 and a keycode ram variable loaded with a value that identifies the 

pressed key.  

For keycode value 0,1,2,3,…15 corresponding table is linked with 4 upper bits of 

PORTB to identify it. If the value of key pressed matches with key code it returns Z=1 , if 

not it returns Z=0 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

40 

 

    

   Fig: Flowchart of  keyswitches 

3.(b).With a simple program explain the concept of timer in detail. 

Reading 16bit of free running Timer 1 

movf TMR1H              ;              read high byte  

movwf TMPH             ;              store in TMPH  

movf TMR1L              ;              read low byte  

movwf TMPL              ;              store in TMPL  

movf TMR1H, W        ;              read high byte in W  

subwf TMPH, W        ;              subtract 1 st read with 2 nd read  

btfsc STATUS, Z       ;               and check for equality  

goto next ; if the high bytes differ, then there is an overflow  read the high byte again 

followed by the low byte  

movf TMR1H, W        ;               read high byte  

movwf TMPH  

movf TMR1L, W         ;               read low byte  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

41 

 

movwf TMPL  

next : nop 

4. (a) Assuming that XTAL = 10 MHz, write a program to tum on pin PORTB4 when 

TMR2 reaches value I 00 (decimal). 

Solution: 

Because XTAL = 10 MHz, TMR2 counts up every 0.4 microsecond.  

TMR2H = PR2 = 100, PORTB4 will be turned on. 

BCF  TRISB,4   ; make  PORTB4  an output  

BCF  PORTB,4   ; turn off PORTB4  

MOVLW OxO   ; Timer2,  no prescale or post scale  

MOVWF T2CON    ; load T2CON reg  

MOVLW OxO   ; TMR2  =  0  

MOVWF TMR2   ; load Timer2  

MOVLW D'l00'   ; PR2  =  100, the period register  

MOVWF PR2   ; load PR2  

BCF  PIRl,TMR2IF     ; clear timer interrupt flag  

BSF  T2CON,TMR20N    ; start Timer2  

AGAIN BTFSS PIRl,TMR2IF   ;monitor Timer2 flag  

BRA  AGAIN  

BSF  PORTB,4     ;turn on PORTB4  

BCF  T2CON,TMR20N    ;stop Timer2  

HERE  BRA  HERE 

 4.(b)Write a program to create a delay of 1 sec using timer 0. 

void InitUsart(void) {      

   // TX Pin - output 

   TRISC6 = 0; 

   // RX Pin - input 

   TRISC7 = 1; 

   // RX Setting, 8bit, enable receive,  

   RCSTA = 0x90;  

   // TX Setting, 8bit, Asinchronius mode, High speed  

   TXSTA = 0x24; 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

42 

 

   // Set Baudrade - 9600 (from datasheet baudrade table) 

   SPBRG = 129; 

} 

  

#define high_start 76 

int seconds, high_count; 

//#INT_RTCC                                    

  void interrupt isr(void) {                               

   high_count -= 1;                           

    

  if(high_count==0) { 

      ++seconds; 

      high_count=high_start;                  

   }                                          

} 

void main() {                                //A simple stopwatch program 

   int start, time; 

   high_count = high_start; 

     T0CS = 0; 

    TMR0IE = 1;    // Enable interrupt on TMR0 overflow 

    T0SE = 0; 

     PSA  = 0; 

     PS2  = 1; 

     PS1  = 1; 

     PS0  = 1; 

    TMR0IF = 0;  // clear the overflow bit 

    GIE=1;   // enable_interrupts(GLOBAL); 

    PEIE=1; 

   do { 

      printf("Press any key to begin.nr"); 

     getc(); 

      start = seconds; 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

43 

 

      printf("Press any key to stop.rn"); 

      getc(); 

      time = seconds - start; 

      printf("%c seconds.nr", time); 

   } while (1); 

} 

  

5. Explain how to set Timer1 and Timer 2 in PIC . 

Timer1 programming  

Timer1 is a 16-bit timer, and its  16-bit register is  split into two bytes, referred to 

as TMRlL (Timerl low byte) and TMRlH (Timerl high byte). Timerl can be programmed in 

16-bit mode only and unlike TimerO, Timer! also has the Tl CON (Timer 1 control) regis-ter 

in addition to the TMR1IF (Timerl interrupt flag). The TMR1IF flag bit goes HIGH when 

TMRlH:TMRlL overflows from FFFF to 0000. Timerl also has the prescaler option, but it 

only supports factors of 1:1, 1:2, 1:4, and 1:8. The P1Rl register contains the TMR1IF flags. 

 

RD16 - 
T1CKPS

2 

T1CKPS

1 

T1OSCE

N 

T1SYN

C 

TMR1C

S 
TMR1ON 

 Fig: Timer 1     TCON register 

 

RD16  D7 :   16-bit read/write enable bit  

   I = Timer! 16-bit is accessible in one 16-bit operation.  

   0 =Timer! 16-bit is accessible in two 8-bit operations.  

D6  Not used  

T1CKPS2:T1CKPS1 D5 D4 Timer1 prescaler selector  

   0 = Stop Timer I 

   0 0 = I: I  Prescale value  

   0 I  = I :2  Prescale value  

   I  0 = I :4  Prescale value  

   I  I  = I :8  Prescale value  

 

T1OSCEN  D3  :Timer1 oscillator enable bit   

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

44 

 

   I = Timer1 oscillator is enabled.  

   0 = Timer1 oscillator is shutoff.  

T1SYNC  D2  :Timer I synchronization (used only when  

   TMR I CS = I for counter mode to synchronize external clock input)  

   If TMR I CS = 0 this bit is not used.  

TMR1CS  Dl  : Timer1 clock source select bit  

   I = External clock from pin RCO/Tl CKI  

   0 =Internal clock (Fosc/4 from XTAL)  

 

TMR1ON  DO : Timer1 ON and OFF control bit  

   I = Enable (start) Timer!  

 

Timer 0: 8-bit timer/counter with 8-bit prescalar 

Timer 1: 16-bit timer/counter with prescalar, can be incremented during sleep via 

external crystal/clock. 

Timer 2: 8-bit timer/counter with 8-bit period register, prescalar, post scalar. 

Timer 2 is an 8-bit timer with a prescalar and a port scalar. It can be used on the 

PWM mode of CCP modules.  

The output of TMR2 goes through a 4-bit post scalar (1:1, 1:2 to 1:16) to generate 

a TMR2 interrupt by setting TMR2IF flag. 

 

 - TOUTPS3 TOUTPS2 TOUTPSI TOUTP

SO 

TMR20

N 

T2CKPSI T2CKPSO 

 

D7     Not used  

TOUTPS3:TOUTPSO D6D5D4D3   Timer2 Output Postcale Select bits  

00 0 0 = 1 :I  Postscale value  

00 0 I =  I :2  Postscale value  

00 I 0 =  I :3  Postscale value  

00 I I =  I :4  Postscale value  

II I 0 = I: 15  Postscale value  

II I I = I: 16  Postscale value  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

45 

 

TMR20N     D2      Timer2 ON and OFF Control bit  

   I = Enable (Start) Timer2  

   0 = Stop Timer2  

T2CKPS1:T2CKPSO DIDO     Timer2 Clock Prescale Select bits  

   0 0 = Prescale is I  

   0 I = Prescale is 4  

http://easyengineering.net
http://easyengineering.net


 

 

46 

 

UNIT-3 

PHERIPHERALS & INTERFACING 

Part-A 

1.what is I2C bus? 

                           The I2c bus is a bidirectional two wire serial bus that provides a 

communication link between integrated circuits. 

2.List the three data transfer speed levels in I2C. 

 Standard mode-100Kbps 

 Fast mode-400Kbps 

 High speed mode-3.4 Kbps 

3. Define the term glitch in ADC. 

It‘s defined as when a high speed ADC fail to give an output  correctly 

within its conversion time and gives the missing 1s in between. It is simply said as 

appearance of false output in ADC is known as glitch. 

4. Mention the delay types occurred in interfacing LCD with PIC. 

 L-Delay(Long Delay) 

 S-Delay(Short Delay) 

5. Write the steps involved in to read busy flag. 

 Select command register 

 Select read operation 

 Send enable signal 

 Read the flag 

 

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

47 

 

6.Draw the block diagram for interfacing a sensor with PIC. 

 

7.Write the formula used to calculate the digital output in ADC. 

                                    DOUT =VIN / STEP SIZE 

Where;                            DOUT =Digital output 

                              VIN =Input Voltage 

8.What is the purpose of busy flag in LCD. 

                In LCD there is a need of some delay to process the command  or data 

this can be done by using busy flag by making RS=0  

9.List the two processes used to interface keypad with PIC. 

 Key Press detection 

 Key Identification     

10.List the registers used to program an ADC. 

1. ADCON0(A/D Control Register 0) 

2. ADCON1(A/D Control register 1) 

11.For a PIC18 based system we have Vref =Vdd =5V. Find the step size. 

                    Step size=5/1024=4.8mv 

12.Assuming that R=5Kᾨ and Iref =2mA calculate VOUT for the binary input 10011001. 

    Iout  =2mA(153/256)=1.195mA 

     Vout  =1.195mA*5K=5.975 

     

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

48 

 

                                                              PART-B 

1.Explain briefly about LCD  interfacing with PIC microcontroller.  

LCD operation: 

           In recent years the LCD has been finding widespread use replacing LED‘s 

(seven-segment LEDs or other multisegment LEDs). This is due to the following reasons: 

I. The declining prices of LCDs. 

2. The ability to display numbers, characters, and graphics. This is in contrast to 

     LEOs, which are limited to numbers and a few characters. 

3. Incorporation of a refreshing controller into the LCD, thereby relieving the 

    CPU of the task of refreshing the LCD. In contrast, the LED must be refreshed 

    by the CPU (or in some other way) to keep displaying the data. 

4. Ease of programming for characters and graphics. 

LCD pin descriptions: The LCD discussed in this section has 14 pins. 

 

Vcc• Vss, And VEE: 

 While Vcc and Vss provide +5 V and ground, respectively, VEE is used for 

controlling LCD contrast. 

RS, Register Select: 

        There are two very important registers inside the LCD. The RS pin is used 

for their selection as follows. If RS = 0, instruction command code register is selected, 

allowing the user to send a command such as clear display, cursor at home, and so on. If 

RS = 1 the data register is selected, allowing the user to send data to be displayed on the 

LCD. 

R/W; Read/Write: 

                             R/W input allows the user to write information to the LCD or 

read information from it. R/W = 1 when reading; R/W = 0 when writing. 

E, enable:               

                  The LCD to latch information presented to its data pins uses the 

enable pin. When data is supplied to data pins, a high-to-low pulse must be applied to the 

En pin in order for the LCD to latch in the data present at the data pins. This pulse must be 

a minimum of 450 ns wide. Here we call this delay the SDELAY (short delay) to distinguish 

it from other delays.                       

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

49 

 

 PIN DESCRIPTION FOR LCD  

Pin 

No 

Symbol I/O port Description 

1 Vss - GND 

2 Vcc - + 5V Power Supply 

3 VEE - Power Supply to Control Contrast 

4 RS I RS =0     To Select Command Register, 

 RS=1    To Select Data Register 

5 R/W I R/W =0 for write, R/W =0 for read 

6 E I/O Enable 

7 DBO I/O The 8-bit data bus 

8 DB1 I/O The 8-bit data bus 

9 DB2 I/O The 8-bit data bus 

10 DB3 I/O The 8-bit data bus 

11 DB4 I/O The 8-bit data bus 

12 DB5 I/O The 8-bit data bus 

13 DB6 I/O The 8-bit data bus 

14 DB7 I/O The 8-bit data bus 

                                                

D0-07: 

                          The 8-bit data pins, DO-D7, are used to send information to the 

LCD or read the contents of the LCD's internal registers. 

                           To display letters and numbers, we send ASCII codes for the 

letters A-Z, a-z, and numbers 0-9 to these pins while making RS = 1. 

                           There are also instruction command codes that can be sent to 

the LCD to clear the display. 

                           The below Table contains lists of instruction command codes. To send 

any of the commands listed in the Table to the LCD, make pin RS = 0. For data, make  

RS = 1. Then send a high-to-low pulse to the E pin to enable the internal latch of the LCD.  

                            There are two ways to send characters (command/data) to the LCD: 

                                 (1) Use a delay before sending the next one,  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

50 

 

                                 (2) Use the busy flag to see if the LCD is ready for the next one 

LCD COMMAND CODES 

Code  Command to LCD Instruction 

1 Clear dtsplay screen 

2 Return home 

4 Decrement cursor (shift cursor to left) 

5 Increment cursor (shift cursor to right) 

6 Shift display right 

7 Shift display left 

8 Display off, cursor off 

A Display off, cursor on 

C Display on, cursor off 

E Display on, cursor blinking 

F Display on, cursor blinking 

10 Shift cursor position to left 

14 Shift cursor position to right 

18 Shift the entire display to the left 

1C Shift the entire display to the right 

80 Force cursor to begin the 1st line 

C0 Force cursor to beginning of 2nd line 

38 2 lines and 5 x 7 matrix 

 

Sending commands and data to LCDs with a time delay: 

                    The  Program shows how to send characters (command/data) to the 

LCD without checking the busy flag. Here 5-10 ms DELAY is mentioned between issuing 

each character to the LCD.  This is know as simply DELAY. In programming an LCD, we 

can also mention  a long delay for the power-up process. This is known as  LDELAY (long 

delay). SDELAY (short delay) is used to make the En(Enable) signal wide enough for the 

LCD's enable input. The below figure shows the LCD connections to the microcontroller.  

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

51 

 

Sending command or data to the LCD using busy flag: 

 

       We use RS = 0 to read the busy flag bit to see if the LCD is ready to receive 

information. The busy flag is D7, and can be read when R/W = 1 and RS = 0, as follows:  

     If R/W = 1, RS = 0. When D7 = 1 (busy flag= 1), the LCD is busy taking care of 

internal operations and will not accept any new information. When D7= 0, the LCD is ready 

to receive new information. 

        The busy flag is D7 of the command register. To read the command register, 

we make R/W =1 and RS = 0, and a L-to-H pulse for the E pin will provide us the command 

register.  

 

  Fig : LCD interfacing 

 After reading the command register, if bit D7 (the busy flag) is HIGH, the LCD is 

busy and no information(command or data) should be issued to it. Only when D7 = 0 can 

we send data or commands to the LCD.  

  Notice that no time delays are used in this method because we are checking the 

busy flag before issuing commands or data to the LCD.  

2.Explain briefly about Keyboard  interfacing with PIC microcontroller.  

         At the lowest level, keyboards are organized in a matrix of rows and 

columns. The CPU accesses both rows and columns through ports; therefore, with two 8-

bit ports, an 8 x 8 matrix of keys can be connected to a microprocessor. 

     When a key is pressed, a row and a column make a contact; otherwise, there 

is no connection between rows and columns. In IBM PC keyboards, a single 

microcontroller takes care of hardware and software interfacing of the keyboard. In such 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

52 

 

systems, programs stored in the ROM of the microcontroller scan the keys continuously, 

identify which one has been activated, and present it to the motherboard. 

For keypad interfacing we must have two processes: 

(a) key press detection, 

 (b) key identification. 

 There are two ways by which the PICJ8 can perform key press detection:  

(1) the interrupt method, 

(2) the scanning method. 

Interrupt method of key press detection: 

Figure(c) shows a 4 x 4 matrix keypad connected to PORTB. The rows 

are connected to PORTB. Low (RB3-RBO) and the columns are connected to 

PORTB. High (RB7-RB4), which is the PORTB-Change interrupt.  

 

     Fig: Keypad 

 

Any changes on the RB7-RB4 pins will cause an interrupt indicating a key press.  

Which goes through the following stages: 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

53 

 

1. To make sure that the preceeding key has been released, O‘s are output to all 

rows at once, and the columns are read and checked repeatedly until all the columns are 

HIGH. When all columns are found to be HIGH, the program waits for a short amount of 

time before it goes to the next stage of waiting for a key to be pressed. 

2. To see if any key is pressed, the columns are connected to the PORTB-

Change interrupt. Therefore, any key press will cause an interrupt and the microcontroller 

will execute the ISR. The ISR must do two things: 

(a) ensure that the first key press detection was not erroneous due to spike noise, 

 (b) wait 20ms to prevent the same key press from being interpreted as multiple key 

          Presses. 

 

Fig: flow chart of Keypad interfacing 

3. To detect which row the key press belongs to, the microcontroller grounds one 

row at a time, reading the columns each time.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

54 

 

If it finds that all columns are HIGH, this means that the key press cannot belong 

to that row; therefore, it grounds the next row and continues until it finds the row the key 

press belongs to.  

Upon finding the row that the key press belongs to, it sets up the starting address 

for the look-up table holding the scan codes (or the ASCll value) for that row and goes to 

the next stage to identify the key. 

4. To identify the key press, the microcontroller rotates the column bits, one bit at 

a time, into the carry flag and checks to see if it is LOW. 

 Upon finding the zero, it pulls out the ASCII code for that key from the look-up 

table; otherwise, it increments the pointer to point to the next element . 

Scanning method for key press detection: 

                 Another method for key press detection is by scanning. In this method, 

to detect a pressed key, the microcontroller grounds all rows by providing 0 to the output 

latch, then it reads the columns. 

If the data read from the columns are equal to 1111, no key has been pressed 

and the process continues until a key press is detected. 

                  If one of the column bits has a zero, however, this means that a key 

press has occurred.  After a key press is detected, the microcontroller will go through the 

process of identifying the key. 

                     Starting with the top row, the microcontroller grounds it by providing 

a LOW to the first row only; then it reads the column.                                                           

 

3.Explain the Mechanism  in PIC for interfacing ADC & DAC. 

ADC INTERFACING: 

The following steps must be followed for data conversion by an ADC chip: 

    1. Select a channel. 

     2. Activate the start conversion (SC) signal to start the conversion of analog input. 

     3. Keep monitoring the end-of-conversion (EOC) signal. 

     4. After the EOC has been activated, we read data out of the ADC chip. 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

55 

 

PIC18F452/458 ADC features: 

The ADC peripheral of the PIC 18 has the following characteristics: 

(a) It is a 10-bitADC. 

(b) It can have 5 to 15 channels of analog input channels, depending on the 

family member. In PIC18452/458, pins RAO--RA7 of PORTA are used for the 8 analog 

channels. See Figures A and B. 

 c) The converted output binary data is held by two special function registers 

called ADRESL (A/D Result Low) and ADRESH (A/D Result High). 

(d) Because the ADRESH:ADRESL registers give us 16 bits and the ADC data 

out is only  10 bits wide, 6 bits of the 16 are unused. We have the option of making either 

the upper 6 bits or the lower 6 bits unused. 

(e) We have the option of using Vdd (Vee), the voltage source of the PICI8 chip 

itself, as the Vref or connecting it to an external voltage source for the Vref. 

(f) The conversion time is dictated by the F osc of crystal frequency connected to 

the OSCs pins. While the Fosc for PICI8 can be as high as 40 MHz, the conversion time 

can not be shorter than 1.6 ms. 

(g) It allows the implementation of the differential Vref voltage using the Vref(+) 

and Vref(-) pins, where Vref= Vref(+)- Vref(-). 

Many of the above features can be programmed by way of ADCONO (A/D control 

register 0) and ADCON1 (A/D control register 1) 

ADCON1 register: 

Another major register of the PICI8's ADC feature is ADCON1. The ADCON1 

register is used to select the Vref voltage among other things.  After the A/D conversion is 

complete, the result sits in registers ADRESL (A/D Result Low Byte) and ADRESH (A/D 

Result High Byte). The ADFM bit of the ADCONI is used for making it right-justified or left- 

justified because we need only 10 bits of the 16. 

ADCONO register: 

The ADCONO register is used to set the conversion time and select the analog 

input channel among other things.. In order to reduce the power consumption of the PIC 

18, the ADC feature is turned off when the microcontroller is powered up. We turn on the 

ADC with the ADON bit of the ADCONO register.  The other important bit is the GO/DONE 

bit. We use this bit to start conversion and monitor it to see if conversion has ended. Notice 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

56 

 

in ADCCONO that not all family members have all the 8 analog input channels. The 

conversion time is set with the ADCS bits. Calculating A/D conversion time:  

By using the ADCS (A/D clock source) bits of both the ADCONO and ADCON1 

registers we can set the A/D conversion time. The conversion time is defined in terms of 

Tad, where Tad is the conversion time per bit. To calculate the Tad, we can select a 

conversion clock source ofFosc/2, Fosc/4, Fosc/8, Fosc/l6, Fosc/32, or Fosc/64, where 

Fosc is the speed of the crystal frequency connected to the PIC18 chip. For the PIC18, the 

conversion time is 12 times the Tad. Notice thatthe Tad cannot be faster than 1.6 ms. 

Steps in programming the A/D converter using polling: 

To program the A/D converter of the PIC 18, the following steps must be taken: 

1. Turn on the ADC module of the PICI8 because it is disabled upon power-on 

reset to save power. We can use the "BSF ADCONO, ADON" instruction. 

2. Make the pin for the selected ADC channel an input pin. We use "BSF 

TRISA, x." or "BSF TRISE, x" where x is the channel number. 

3. Select voltage reference and A/C input channels. We use registers ADCONO 

and ADCONl. 

4. Select the conversion speed. We use registers ADCONO and ADCONI. 

5. Wait for the required acquisition time. 

6. Activate the start conversion bit of GO/DONE. 

7. Wait for the conversion to be completed by polling the end-of-conversion (GO/DONE) 

   bit. 

8. After the GO/DONE bit has gone LOW, read the ADRESL and ADRESH registers 

to get the digital data output. 

9. Go back to step 5. 

Programming A/D converter using interrupts: 

To program the A/D using the interrupt method,we need to set HIGH the ADIE 

(A/D interrupt enable) flag. If ADIE = 1, then upon the completion of the conversion, the 

ADIF (A/D interrupt flag) becomes HIGH, which will force the CPU to jump to read binary 

outputs. 

DAC INTERFACING: 

The digital-to-analog converter (DAC) is a device widely used to convert 

digital pulses to analog signals. In this section we discuss the basics of interfacing DAC .                

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

57 

 

           The vast majority of integrated circuit DACs, including the MC1408 

(DAC0808) used here, use the R/2R method because it can achieve a much higher degree 

of precision. The first criterion for judging a DAC is its resolution, which is a function of the 

number of binary inputs. The common ones are 8, 1O, and 12 bits. The number of data bit 

inputs decides the resolution of the DAC because the number of analog output levels is 

equal to 2n, where n is the number of data bit inputs. Therefore, an 8-input DAC such as 

the DAC0808 provides 256 discrete voltage (or current) levels of output. Similarly, the 12-

bit DAC provides 4,096 discrete voltage levels.There are also 16-bit DACs. 

 

 

   Fig  PIC18 ADC Channel and Reference Selection 

MC1408 DAC (or DAC0808): 

In the MC1408 (DAC0808), the digital inputs are converted to current (Iout), and by 

connecting a resistor to the Iout pin, we convert the result to voltage. 

The total current provided by the Iout pin is a function of the binary numbers at the 

DO-D7 inputs of the DAC0808 and the reference current (Iref), and is as follows: 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

58 

 

 

where DO is the LSB, D7 is the MSB for the inputs, and Iref is the input current 

that must be applied to pin 14. The Iref current is generally set to 2.0 mA. Figure below 

shows the generation of current reference (setting Iref= 2 mA) by using the standard 5 V 

power supply. Now assuming that Iref= 2 mA, if all the inputs to the DAC are high, the 

maximum output current  is 1.99mA   . 

Converting Iout to voltage in DAC0808: 

Ideally we connect the output pin lout to a resistor, convert this current to voltage, 

and monitor the output on the scope. In real life, however, this can cause in accuracy 

because the input resistance of the load where it is connected will also affect the output 

voltage. For this reason, the Iref current output is isolated by connecting it to an op-amp 

such as the 741 with Rr= 5 kOhms for the feedback resistor. 

Generating a sine wave: 

To generate a sinewave, we first need a table whose values represent the 

magnitude of the sine of angles between 0 and 360 degrees. The values for the sine 

function vary from -1.0to + 1.0 for 0- to 360-degree angles. Therefore, the table values are 

integer numbers representing the voltage magnitude for the sine of theta. This method 

ensures that only integer numbers are output to the DAC by the PIC 18 microcontroller. 

Full-scale output of the DAC is achieved when all the data inputs of the DAC are HIGH. 

Therefore, to achieve the full-scale 10 V output, we use the following equation. 

                           

To find the value sent to the DAC for various angles, we simply multiply the Vout 

voltage by 25.60 because there are 256 steps and full-scale Vout is 10volts.   

Therefore, 256 steps / 10 V = 25.6 steps per volt. 

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

59 

 

4.Write short notes about temperature sensor and Explain how it is interfaced with 

PIC18 series microcontroller. 

Temperature sensors: 

 Transducers convert physical data such as temperature, light intensity, flow, 

and speed to electrical signals. Depending on the transducer, the output produced is in the 

form of voltage, current, resistance, or capacitance. For example, temperature is converted 

to electrical signals using a transducer called a thermistor. A thermistor responds to 

temperature change by changing resistance, but its response is not linear. Simple and 

widely used linear temperature sensors include the LM34 and LM35 series from National 

Semiconductor Corp. 

LM34 and LM35 temperature sensors: 

 The sensors of the LM34 series are precision integrated-circuit temperature 

sensors whose output voltage is linearly proportional to the Fahrenheit temperature. The 

LM34 requires no external calibration because it is internally calibrated. It outputs  10 mV 

for each degree of Fahrenheit temperature. 

The LM35 series sensors are precision integrated-circuit temperature sensors 

whose output voltage is linearly proportional to the Celsius (centigrade) termperature. The 

LM35 requires no external calibration because it is internally calibrated. It outputs 10 m V 

for each degree of centigrade temperature.  

Signal conditioning and interfacing the LM35 to the PIC18 

               Signal conditioning is widely used in the world of data acquisition. The 

most common transducers produce an output in the form of voltage, current, 

charge,capacitance, and resistance. We need to convert these signals to voltage, however, 

in order to send input to an A-to-D converter. 

                 This conversion (modification) is commonly called signal conditioning. 

Signal conditioning can be a current to voltage conversion or a signal amplification. For 

example, the thermistor changes resistance with temperature. 

                  The change of resistance must be translated into voltages in order to 

be of any use to an ADC. Look at the case of connecting an LM34 to an ADC of the 

PIC18F458. The A/D has 10-bit resolution with a maximum of 1,024 steps and the LM34 

(or LM35) produces 10 m V for every degree of temperature change. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

60 

 

  Now, if we use the step size of 10 mV, the Vout will be 10,240 mV (10.24 V) for 

full-scale output. This is not acceptable even though the maximum temperature sensed by 

the LM34 is 300 degrees F, and the highest output for the A/D we will get is 3,000 m V  

 

                             

                          Fig. Getting data from analog world 

            

             Now, if we use the step size of2.5 mV, the V001 will be 1,024 x 2.5 mV= 

2,560 mV (2.56 V) for full-scale output. That means we must set Vref= 2.56 V.  This makes 

the binary output number for the A/D 4 times the real temperature ( 10mV/2.5 m V = 4). We 

can scale it by dividing it by 4 to get the real number for temperature.                     

Notice that we use the LM336-2.5 zener diode to fix the voltage across the 10 K 

pot at 2.5 volts. The use of the LM336-2.5 should overcome any fluctuations in the power 

supply. 

Reading and displaying temperature: 

           For reading and displaying an ALP program is given below, in this program 

following points are to be noted; 

(1) The LM34 (or LM35) is connected to channel 0 (RAO pin). 

(2) The channel AN3 (RA3 pin) is connected to the Vref of 2.56 V. That makes 

PCFG = 0010 for the ADCONl register. 

(3) The 1O-bit output of the A/D is divided by 4 to get the real temperature. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

61 

 

 

 

                     Fig . PIC18F458 Connection to Temperature Sensor 

5. Explain the concept Of  I2C Bus In PIC Microcontroller. 

I²C (pronounced I-squared-C) created by Philips Semiconductors and commonly 

written as 'I2C' stands for Inter-Integrated Circuit and allows communication of data 

between I2C devices over two wires. It sends information serially using one line for data 

(SDA) and one for clock (SCL). 

 

Master and slave 

The  I2C protocol defines the concept of master and slave devices. A master 

device is simply the device that is in charge of the bus at the present time and this device 

controls the clock and generates START and STOP signals. Slaves simply listen to the bus 

and act on controls and data that they are sent. 

The master can send data to a slave or receive data from a slave - slaves do not 

transfer data between themselves. 

Multi Master 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

62 

 

Multi master operation is a more complex use of I2C that lets you have different controlling 

devices on the same bus. You only need to use this mode if you have more than one 

microcontroller on the bus (and you want either of them to be the bus master). 

Multi master operation involves arbitration of the bus (where a master has to fight to get 

control of the bus) and clock synchronisation (each may a use a different clock e.g. 

because of separate crystal clocks for each micro). 

Data and Clock 

The I2C interface uses two bi-directional lines meaning that any device could drive either 

line. In a single master system the master device drives the clock most of the time - the 

master is in charge of the clock but slaves can influence it to slow it down The two wires 

must be driven as open collector/drain outputs and must be pulled high using one resistor 

each - this implements a 'wired AND function' - any device pulling the wire low causes all 

devices to see a low logic value - for high logic value all devices must stop driving the wire.  

Speed 

  Standard clock speeds are 100 kHz and 10 kHz but the standard lets you use 

clock speeds from zero to 100 kHz and a fast mode is also available (400 kHz - Fast-

mode). An even higher speed (3.4MHz - High-speed mode) for more demanding 

applications . 

 

                      Fig:I2C  bus 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

63 

 

 

 

Slow peripherals 

 A slow slave device may need to stop the bus while it gathers data or services an 

interrupt etc. It can do this while holding the clock line (SCL) low forcing the master into the 

wait state. The master must then wait until SCL is released before proceeding. 

 

   Fig:I2C clock pulses 

Data transfer sequence 

 A basic Master to slave read or write sequence for I2C follows the following order: 

Data Transfer from master to slave 

 Instruction sequence data from master to slave 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

64 

 

 

 A master device sends the sequence S ADDR W and then waits for an acknowledge 

bit (A) from the slave which the slave will only generate if its internal address matches the 

value sent by the master. If this happens then the master sends DATA and waits for 

acknowledge (A) from the slave. The master completes the byte transfer by generating a 

stop bit (P) (or repeated start). 

Data transfer from slave to master 

 Instruction sequence data from slave to master 

 

  A similar process happens when a master reads from the slave but in this 

case, instead of W, R is sent. After the data is transmitted from the slave to the master 

the master sends the acknowledge (A). If instead the master does not want any more data 

it must send a not-acknowledge which indicates to the slave that it should release the bus. 

This lets the master send the STOP or repeated START signal. 

START (S) and STOP (P) bits 

START (S) and STOP (P) bits are unique signals that can be generated on the bus 

but only by a bus master. Reception of a START bit by an I2C slave device resets its 

internal bus logic. This can be done at any time so you can force a restart if anything goes 

wrong even in the middle of communication. START and STOP bits are defined as rising or 

falling edges on the data line while the clock line is kept high. 

 Text definition of START and STOP signals 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

65 

 

START condition (S) SCL = 1, SDA falling edge 

STOP condition (P) SCL = 1, SDA rising edge 

 

  

Repeated START (Sr) 

This seems like a confusing term at first as you ask yourself why bother with it as it is 

functionally identical to the sequence : 

 

S ADDR (R/W) DATA A P 

The only difference is that for a repeated start you can repeat the sequence starting from 

the stop bit (replacing the stop bit with another start bit). 

S ADDR (R/W) DATA A Sr ADDR (R/W) DATA A P 

The main reason that the Sr bit exists is in a multi master configuration where the current 

bus master does not want to release its mastership. Using the repeated start keeps the bus 

busy so that no other master can grab the bus. 

Data 

All data blocks are composed of 8 bits. The initial block has 7 address bits followed by a 

direction bit (Read or Write). Following blocks have 8 data bits. Acknowledge bits are 

squeezed in between each block. Each data byte is transmitted MSB first including the 

address byte.  

Acknowledge 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

66 

 

The acknowledge bit (generated by the receiving device) indicates to the transmitter that 

the the data transfer was ok. Note that the clock pulse for the acknowledge bit is always 

created by the bus master. 

ACK data master --> slave 

In this case the slave generates the acknowledge signal. 

ACK data slave --> master 

In this case the master generates the acknowledge signal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

67 

 

UNIT -4 

INTRODUCTION TO ARM PROCESSOR 

 

1. What are the features in Berkeley RISC designs rejected by ARM designers? 

The features rejected by ARM designers are 

 Register Windows  

 Delayed branches 

 Single cycle execution of all instructions 

2. What are the basic components of a Processor? 

  The basic components of processor are a program counter (PC), an 

accumulator, an arithmetic-logic unit (ALU) and an instruction register (IR) 

3. What are the various types of instructions? 

   The various types of instructions are  

 Data processing instructions ( add, subtract and multiply) 

 Data movement instructions (copy data from one place in memory to another)  

 Control flow instructions that (switch execution from one part of the program to 

another) 

 Special instructions ( control the processor's execution state) 

4. What are the various addressing modes in Processors? 

1.  Immediate addressing  2.  Absolute addressing  3.  Indirect addressing  4.  

Register addressing  5.  Register indirect addressing  6.  Base plus offset addressing 7.  

Base plus index addressing    8.  Base plus scaled index addressing 9.  Stack addressing 

5. Give the sequence of Pipeline in ARM 

1.  Fetch the instruction from memory (fetch). 2.  Decode it to see what sort 

ofinstruction it is (dec). 3.  Access any operands that may be required from the register 

bank (reg). 4.  Combine the operands to form the result or a memory address (ALU). 5.  

Access memory for a data operand, if necessary (mem). 6.  Write the result back to the 

register bank (res). 

6.What are the advantages of RISC processor? 

• A smaller die size. 

• A shorter development time. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

68 

 

• A higher performance. 

7. What are the various level of accuracy in ARMULATOR? 

•  Instruction-accurate modeling 

•  Cycle-accurate modeling  

•  Timing-accurate modeling  

8. What are the Data Transfer Instructions in ARM? 

• Single register load and store instructions. 

• Multiple register load and store instructions. 

• Single register swap instructions. 

9.Define ASR, ROR and RRX. 

ASR: arithmetic shift right by 0 to 32 places; fill the vacated bits at the most 

significant end of the word with zeros if the source operand was positive, or with ones if the 

source operand was negative.  

•  ROR: rotate right by 0 to 32 places; the bits which fall off the least significant 

end of the word are used, in order, to fill the vacated bits at the most significant end of the 

word.  

•  RRX: rotate right extended by 1 place; the vacated bit (bit 31) is filled with the 

old value of the C flag and the operand is shifted one place to the right. With appropriate 

use of the condition codes (see below) a 33-bit rotate of the operand and the C flag is 

performed. 

10. What are the important features ARM instruction set? 

•  The load-store architecture •  3-address data processing instructions •  

conditional execution of every instruction •  the inclusion of very powerful load and store 

multiple register instructions  

•  Open instruction set extension through the coprocessor instruction set, 

including adding new registers and data types to the programmer's model 

•  Very dense 16-bit compressed representation of the instruction set in the Thumb 

architecture. 

11. What are the Drawbacks of RISC 

The drawbacks of RISC are 

•  RISCs generally have poor code density compared with CISCs.  

•  RISCs don't execute x86 code. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

69 

 

12. What is the various Instruction set design 

4-address instructions (ADD  d, s1, s2, next_i  ; d := s1 + s2) 

3-address instructions (ADD  d, s1, s2  ; d := s1 + s2) 

2-address instructions (ADD d, s1 ; d := d + s1) 

1-address instructions (ADD s1 ; accumulator := accumulator + s1) 

0-address instructions (ADD  ; top_of_stack := top_of_stack + next_on_stack) 

    PART-B 

1. Explain the ARM programmer’s model  

  When writing user-level programs things to be considered in the 

programmers model are 15 general-purpose 32-bit registers (r0 to r 14), Program Counter 

(r15) and Current Program Status Register (CPSR) need be considered. The remaining 

registers are used only for system-level programming and for handling exceptions (for 

example, interrupts).  

(i) Current Program Status Register (CPSR) 

The CPSR is used in user-level programs to store the condition code bits.  The 

bits at the bottom of the register control the processor mode, instruction set and interrupt 

enables  

 The condition code flags are in the top four bits of the register and have the 

following meanings: 

•  N: Negative; the last ALU operation which changed the flags produced a negative  

result (the top bit of the 32-bit result was a one).  

•  Z: Zero; the last ALU operation which changed the flags produced a zero result  

(every bit of the 32-bit result was zero).  

•  C: Carry; the last ALU operation which changed the flags generated a carry-out,  

either as a result of an arithmetic operation in the ALU or from the shifter.  

•  V: oVerflow; the last arithmetic ALU operation which changed the flags generated  

an overflow into the sign bit.  

(ii)The memory system 

 Memory may be viewed as a linear array of bytes numbered from zero up to 232-l.  

 Data items may be 8-bit bytes, 16-bit half-words or 32-bit words. Words are always 

aligned on 4-byte boundaries and half-words are aligned on even byte boundaries. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

70 

 

 A word-sized data item must occupy a group of four byte locations starting at a byte 

address which is a multiple of four 

 Half-words occupy two byte locations starting at an even byte address. 

 

(iii) Load-store architecture 

 ARM (RISC processors ) employs a load-store architecture. This means that the 

instruction set will only process (add, subtract, and so on) values which are in registers and 

will always place the results of such processing into a register.  

ARM instructions fall into one of the following three categories: 

 Data processing instructions: These use and change only register values.  

 Data transfer instructions: These copy memory values into registers  

 Control flow instructions: Normal instruction execution uses instructions stored at 

consecutive memory addresses.  

(iv) Supervisor mode 

 The ARM processor supports a protected supervisor mode.  

 The protection mechanism ensures that user code cannot gain supervisor 

privileges without appropriate checks being carried out to ensure that the 

code is not attempting illegal operations.  

 The upshot of this for the user-level programmer is that system-level 

functions can only be accessed through specified supervisor calls.  

(v) The ARM instruction set  

  All ARM instructions are 32 bits wide and are aligned on 4-byte boundaries  

in memory. The most notable features of the ARM instruction set are: 

 3-address data processing instructions  

 conditional execution of every instruction;  

 the ability to perform a general shift operation and a general ALU operation in a  

single instruction that executes in a single clock cycle;  

 open instruction set extension through the coprocessor instruction set, including  

adding new registers and data types to the programmer's model;  

(vi) The I/O system 

 The ARM handles I/O (input/output) peripherals (such as disk controllers, network  

interfaces) as memory-mapped devices with interrupt support.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

71 

 

 The internal registers in these devices appear as addressable locations within the 

ARM's memory map and may be read and written using the same (load-store) 

instructions as any other memory locations. 

 Peripherals may attract the processor's attention by making an interrupt request 

using either the normal interrupt (IRQ) or the fast interrupt (FIQ) input.  

 Both interrupt inputs are level-sensitive and maskable. Normally most interrupt 

sources share the IRQ input, with just one or two time-critical sources connected to 

the higher-priority FIQ input. 

  

(v)ARM exceptions 

  The ARM architecture supports a range of interrupts, traps and 

supervisor calls are known as exceptions. 

 The general way these are handled is the same in all cases: 

 1. The current state is saved by copying the PC into rl4_exc and the CPSR into  

 SPSR_exc (where exc stands for the exception type).  

 2. The processor operating mode is changed to the appropriate exception mode.  

 3. The PC is forced to a value between 0016and 1C16, the particular value  

     depending on the type of exception.  

 

 The exception handler will use rl3_exc,  which will normally have been 

initialized to point to a dedicated stack in memory, to save some user 

registers for use as work registers. 

 The return to the user program is achieved by restoring the user registers and 

then using an instruction to restore the PC and the CPSR atomically. 

2. Explain the various ARM development tools? 

 Software development for the ARM is supported by a high range of tools 

developed by ARM Limited, and there are also many third party and public domain tools 

available, such as an ARM back-end for C compiler. 

 It makes a good environment for software development; the tools are 

intended for cross-development from a platform such as a PC running Windows or a 

suitable UNIX workstation. 

(i) The ARM C compiler 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

72 

 

The ARM C compiler is compliant with the ANSI (American National Standards 

Institute) standard for C and is supported by the appropriate library of standard functions.  

(ii) The ARM assembler 

 The ARM assembler is a full macro assembler which produces ARM object format 

output that can be linked with output from the C compiler.  

 Assembly source language is near machine-level, with most assembly instructions 

translating into single ARM  instructions.  

 

(iii)The linker 

 The linker takes one or more object files and combines them into an executable 

program. 

  It can assemble the various components of the program in a number of different 

ways, depending on whether the code is to run in RAM or ROM. 

(iv) ARMsd 

 The ARM symbolic debugger is a front-end interface to assist in debugging 

programs running either under emulation (on the ARMulator) or remotely on a target 

system such as the ARM development board.  

 Debugging a system where the processor core is embedded within an application-

specific system chip . 

 

(v) ARMulator 

 The ARMulator (ARM emulator) is a suite of programs that models the behaviour of 

various ARM processor cores in software on a host system. It can operate at various 

levels of accuracy: 

 Instruction-accurate modeling gives the exact behaviour of the system state 

without regard to the precise timing characteristics of the processor. 

 Cycle-accurate modeling gives the exact behaviour of the processor on a cycle by- 

cycle basis, allowing the exact number of clock cycles that a program requires to be 

established. 

 Timing-accurate modeling presents signals at the correct time within a cycle, 

allowing logic delays to be accounted for. 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

73 

 

 

 

 (vi) ARM development board 

The ARM Development Board is a circuit board incorporating a range of 

components and interfaces to support the development of ARM-based systems.  

It includes an ARM core (for example, an ARM7TDMI), memory components 

which can be configured to match the performance and bus-width of the memory in the 

target system, and electrically programmable devices which can be configured to emulate 

application-specific peripherals 

(vii) Software Toolkit 

ARM Limited supplies the complete set of tools described above, with some 

support utility programs and documentation, as the 'ARM Software Development Toolkit'. 

These files may be: 

• source files (C, assembler, and so on); 

• object files; 

• library files. 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

74 

 

(viii) JumpStart 

The JumpStart tools from VLSI Technology  include the same basic set of 

development tools but present a full X-windows interface on a suitable workstation rather 

than the command-line interface of the standard ARM toolkit.  

 

3. Explain the architecture of ARM 

 ARM is the acronym for Advanced RISC Machine 

 RISC stands for Reduced Instruction Set Computer. 

 RISC based architecture although invented quite earlier but has become popular 

and overtook its rival architecture Complex Instruction Set Computer (CISC) 

somewhere during late nineties. Most popular CISC architecture is 80x86 

processors from Intel.  

 The advantage of RISC is in the simplicity (in terms of processor resource 

consumption) of the instructions and processing time. Each instruction takes only 

single clock cycle. Overall power consumption is very less. Due to this fast 

response, low power consumption and coding flexibility, RISC architecture is highly 

suitable for embedded systems. 

 However there is one drawback with RISC, that is the instruction set code is longer 

and takes more memory. This issue is no more a concern with the growth in the 

memory technology. 

Highlights of ARM7TDMI: 

  There are 37 registers of 32 bit wide in this processor core. 16 registers are 

available for the  programmer.  

  It's pipeline architecture; that is 3 instructions are processed simultaneously at 3 

different stages.  

 The bus architecture is of Von Neumann type where single 32-bit data bus carry 

both instructions  and data.  

 The data-types can be of 8 bit /16 bit/32 bit wide.  

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

75 

 

 

      Fig:ARM architecture 

  Processor can run on seven different modes based on the application requirement.  

 Built in 32x8 multiplier and a 32 bit barrel shifter (both needed much for DSP 

functionality) 

   This processor can also execute another instruction set called THUMB state (16 

bit) to give the        programmer an option to use this processor like CISC processor.  

 The total instruction set can be tidier and takes less memory space. Built in SRAM 

of 16 KB and FlashROM of 128 KB. 

 Robust clock network 

  Interrupt controller supports 41 interrupt resources 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

76 

 

  External memory controller to access ROM, SRAM, and I/O connected to the 

external memory  space. 

  Has system timer of 16bit auto reload timer with its interrupt given high priority. 

 Built-in DMA controller enables direct data transfer between memory-memory, I/O -

memory, and  between I/O -I/O devices to spare the CPU from simple data transfer 

burden. 

 Watchdog timer to monitor the program from running out of control and generate 

interrupt or reset  signal. 

 Built-in 4-channel, 10-bit resolution analog-to-digital converter supports two modes 

of  operation:  Scan mode sequentially converts input from the selected range of 

channels; select mode  converts input   from a single channel. 

 15 general purpose I/O ports: 8channels of 8-bit, 3 channels of 7-bit, 3 channels of 

6-bits, and  one channel of 5 bits. 

 Integrates one channel of I2C bus interface, one I2S (serial audio interface) bus 

interface, one UART  interface, one SIO interface and one SPI interface.  

 Real time clock (RTC) with 10,000-year calendar with resolution down to 1 second. 

 Flexible timer block with 6 channels of 16 bit timer. 

4. Explain the memory Hierarchy in ARM processor. 

(i) Memory size and speed 

   A typical computer memory hierarchy comprises several levels, 

each level having a characteristic size and speed. 

 A RISC processor will typically have around thirty-two 32-bit registers making a total 

of 128 bytes, with an access time of a few nanoseconds.  

 On-chip cache memory will have a capacity of eight to 32 Kbytes with an access 

time around ten nanoseconds.  

 Main memory will be megabytes to tens of megabytes of dynamic RAM with an 

access time around 100 nanoseconds.  

 Backup store, usually on a hard disk, will be hundreds of Mbytes up to a few Gbytes 

with an access time of a few tens of milliseconds.  

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

77 

 

(ii) On-chip memory 

 Some form of on-chip memory is essential if a microprocessor is to deliver its  

best performance.  

 Only on-chip memory can support zero wait state access speeds, and it will also 

give better power-efficiency and reduced electromagnetic interference than off-chip 

memory. 

On-chip RAM is preferred to cache for a number of reasons: 

 It is simpler, cheaper, and uses less power. 

 It has more deterministic behaviour. 

(iii) Caches 

 The first RISC processors were introduced at a time when standard memory parts 

were faster than their contemporary microprocessors by these caches. 

 A cache memory is a small, very fast memory that retains copies of recently used 

memory values.  

 It operates transparently to the programmer, automatically deciding which values to 

keep and which to overwrite. 

 Caches can be built in many ways. At the highest level a processor can have one of 

the following two organizations: 

 A unified cache. 

 Separate instruction and data caches. 

 The proportion of all the memory accesses that are satisfied by the cache is the hit rate, 

usually expressed as a percentage, and the proportions that are not is the miss rate. 

This, simplest, cache organization has a number of properties  

 A particular memory item is stored in a unique location in the cache; two items with 

the same cache address field will contend for use of that location.  

 Only those bits of the address that are not used to select within the line or to 

address the cache RAM need be stored in the tag field.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

78 

 

                          

 

 Fig: unified cache. 

 

The tag and data access can be performed at the same time, giving the fastest 

cache access time of any organization. (iv) Memory management 

 A single processor can only execute instructions from one program at any instant.  

 The rapid switching is managed by the operating system, so the application 

programmer can write his or her program as though it owns the whole machine.  

The mechanism used to support this is described by the term memory 

management unit (MMU). There are two principal approaches to memory management, 

called  segmentation and paging.                               

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

79 

 

   (v) Segmentation: 

 The simplest form of memory management allows an application to view its memory as 

a set of segments, where each segment contains a particular sort of information. 

 Every memory access provides a segment selector and a logical address to the MMU.  

 Segmentation allows a program to have its own private view of memory and to coexist 

transparently with other programs in the same memory space. 

 

 It runs into difficulty, when the coexisting programs vary and the available memory is 

limited. Since the segments are of variable size, the free memory becomes fragmented 

over time and a new program may be unable to start, not because there is insufficient 

free memory, but because the free memory is all in small pieces none of which is big 

enough to hold a segment of the size required by the new program. 

 Most processors now incorporate a memory mapping scheme based on fixed-size 

chunks of memory called pages.  

 

(vi) Paging: 

  In a paging memory management scheme both the logical and the 

physical address spaces are divided into fixed-size components called pages.   

  A page is usually a few kilobytes in size, but different architectures use 

different page sizes. The relationship between the logical and physical pages is stored 

in page tables, which are held in main memory. 

    A simple sum shows that storing the translation in a single table 

requires a very large table: if a page is 4 Kbytes, 20 bits of a 32-bit address must be 

translated, which requires 220 x 20 bits of data in the table. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

80 

 

                      

 

 Fig: Separate instruction and data caches. 

 

 

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

81 

 

(vii) Virtual memory:      

 An operating system which has run out of memory to allocate can transparently 

move a page or a segment out of main memory into backup store, which for this 

purpose is usually a hard disk, and mark it as absent.  

 When implemented with the paged memory management scheme, this process 

is known as demand-paged virtual memory. A program can be written to occupy 

a virtual memory space that is larger than the available physical memory space. 

 

5. a)Write an assembly level program to print a text in r0 register. 

 

SWI_WriteC EQU  &0  ;output character in r0 

SWI_Exit  EQU  &11  ;finish program 

   ENTRY   ;code entry program 

START  ADR  r1,TEXT ;r1 ―HELLO‖ 

LOOP  LDRB  r0, [r1], #1 ;get the next byte 

 CMP  r0,[r1],#1 ;check for text end 

 SWINE SWI_WriteC ;if not end print 

 BNE  LOOP  ;.. and loop back 

 SWI  SWI_Exit ;end of execution 

 TEXT  =  ―Hello World‖, &0a,&0d,0 

 END      ; end of program 

source 

 

5. b) Write a subroutine to output a text string immediately following the 

call.  AREA  Text_Out, CODE, READONLY 

SWI_Exit  EQU &0   ; output character in r0 

SWI_Exit  EQU &11   ; finish program 

   ENTRY    ; code entry point 

   BL  TextOut  ; print following string 

   =  *Test string* , &0a, &0d, 0; 

   ALIGN 

   SWI  SWI_Exit  ; finish 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

82 

 

TextOut  LDRB  r0, [r14], #1  ; get next character 

   CMP  r0, #0   ; test for end mark 

   SWINE SWI_WriteC  ; if not end, print… 

   BNE  TextOut  ;  .. and loop 

   ADD  r14, r14, #3  ; pass next word boundary 

   BIC  r14, r14, #3  ; round back to boundary 

   MOV  pc, r14  ; return 

   END 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

83 

 

 

UNIT – V ARM ORGANIZATION 

PART-A 

1. Give some examples of embedded ARM applications. 

 Cortex-A9  used in Samsung Galaxy S II, Sony Xperia U, Apple iPad 

 ARM926EJ-S used in Sony Ericsson (K,W series), LG arena 

 Cortex-A8 used in HTC Desire , Apple iPhone3GS 

 ARM710  used in Acorn RISC PC 700 

2. What are the 3- stage pipelines?  

 Fetch 

 Decode 

 Execute 

3. What are the five stage pipelines?  

 Fetch 

 Decode 

 Execute 

 Buffer / data 

 Write back 

4. What are the main features of ARM instruction set? 

 All instructions are 32 bits long. 

 Most instructions execute in a single cycle. 

 Every instruction can be conditionally executed. 

 Load/store architecture  

 Data processing instructions act only on registers 

 Three operand format 

 Combined ALU and shifter for high speed bit manipulation 

5. What is instruction pipelining? 

 Instruction pipelining is a technique that implements a form of parallelism 

called instruction-level parallelism within a single processor. It allows faster CPU 

throughput (the number of instructions that can be executed in a unit of time) than would 

otherwise be possible at a given clock rate. The basic instruction cycle is broken up into 

a series called a pipeline.  

www.EasyEngineering.net

https://en.wikipedia.org/wiki/ARM_Cortex-A9_MPCore
https://en.wikipedia.org/wiki/ARM9E
https://en.wikipedia.org/wiki/ARM_Cortex-A8
https://en.wikipedia.org/wiki/ARM7
http://easyengineering.net
http://easyengineering.net


 

 

84 

 

6. What are the registers of ARM?  

ARM has 37 registers in total, all of which are 32-bits long. 

1 dedicated program counter 

1 dedicated current program status register 

5 dedicated saved program status registers 

30 general purpose registers 

7. What are the operating modes? 

Seven operating modes: 

User                        *Privileged             *FIQ               *IRQ                

*Abort              *Undefined            *Supervisor 

8.  What is stack in ARM? 

A stack is an area of memory which grows as new data is ―pushed‖ onto the 

―top‖ of it, and shrinks as data is ―popped‖ off the top. Two pointers define the current 

limits of the stack.  

 Base pointer, used to point to the ―bottom‖ of the stack (the first location).  

 Stack pointer, used to point the current ―top‖ of the stack. 

9. What is co-processor interface in ARM processor? 

The processor supports the connection of on-chip coprocessors through an 

external coprocessor interface. All types of coprocessor instruction are supported. The 

ARM instruction set supports the connection of 16 coprocessors, numbered 0-15, to an 

ARM processor.  

10.  What is debugging in ARM? 

ARM processors include hardware debugging facilities, allowing software 

debuggers to perform operations such as halting, stepping, and breakpointing of code 

starting from reset. These facilities are built using JTAG support, though some newer 

cores optionally support ARM's own two-wire "SWD" protocol. 

11. Define the term Fetch, Decode & Execute. 

 Fetch: Instruction is fetched from memory and placed in the instruction pipeline. 

  Decode:Instruction is decoded and the datapath control signals prepared for the  

   next cycle. In this stage the instruction 'owns' the decode logic but not the  datapath. 

 Execute:Instruction 'owns' the datapath; the register bank is read, an operand  

   shifted, the ALU result generated and written back into a destination register. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

85 

 

12. Define the term buffer data and write back in 5 stage pipeline. 

Buffer/data: Data memory is accessed if required. Otherwise the ALU result is 

simply buffered for one clock cycle to give the same pipeline flow for all instructions.  

Write-back:Results generated by the instruction are written back to the register 

file, including any data loaded from memory. 

    PART-B 

1. Briefly explain the 3-STAGE pipeline ARM organization.  

The principal components are: 

• The register bank, which stores the processor state. It has two read ports 

and one write port which can each be used to access any register, plus an additional 

read port and an additional write port that give special access to r15, the program 

counter. 

 • The barrel shifter, which can shift or rotate one operand by any number of 

bits.  

• The ALU, which performs the arithmetic and logic functions required by the 

instruction set.  

• The address register and incremental, which select and hold all memory 

addresses and generate sequential addresses when required.  

• The data registers, which hold data passing to and from memory.  

• The instruction decoder and associated control logic.  

3-stage pipeline stages: 

 Fetch: the instruction is fetched from memory and placed in the instruction 

pipeline. 

 Decode: the instruction is decoded and the datapath control signals prepared 

for the next cycle. In this stage the instruction 'owns' the decode logic but not the 

datapath. 

 Execute: the instruction 'owns' the data path; the register bank is read, an 

operand shifted, the ALU result generated and written back into a destination register. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

86 

 

 

   Fig:ARM 3 stage pipeline 

 

 

 

An individual instruction takes three clock cycles to complete, so it has a 

three-cycle latency, but the through-put is one instruction per cycle. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

87 

 

  A sequence of single-cycle ADD instructions with a data store 

instruction, STR, occurring after the first ADD. The cycles that access main memory is 

shown with light shading so it can be seen that memory is used in every cycle. The data 

path is likewise used in every cycle, being involved in all the execute cycles, the 

address calculation and the data transfer.  

  The decode logic is always generating the control signals for the data 

path to use in the next cycle, so in addition to the explicit decode cycles it is also 

generating the control for the data transfer during the address calculation cycle of the 

STR. 

Thus, in this instruction sequence, all parts of the processor are active in 

every cycle and the memory is the limiting factor, The simplest way to view breaks in 

the ARM pipeline is to observe that: 

When the processor is executing simple data processing instructions the 

pipeline enables one instruction to be completed every clock cycle.  

•  All instructions occupy the datapath for one or more adjacent cycles.  

•  For each cycle that an instruction occupies the datapath, it occupies the 

decode logic in the immediately preceding cycle.  

•  During the first datapath cycle each instruction issues a fetch for the next 

instruction but one.  

•  Branch instructions flush and refill the instruction pipeline. 

 

                                            

2. Describe the 5-STAGE pipeline ARM organization. 

 All processors have to develop to meet the demand for higher performance. 

The 3-stage pipeline used in the ARM cores up to the ARM is very cost-effective, but 

higher performance requires the processor organization to be rethought. The time, T , 

required to execute a given program is given by: 

  

   Tprog=(Ninst x CPI) / fclk 

Where,    Ninst is the number of ARM instructions executed in the course of the program, 

                CPI is the average number of clock cycles per instruction  

                 fclk is the processor's clock frequency.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

88 

 

Since Ninst is constant for a given program, there are only two ways to increase 

performance: 

 Increase the clock rate, fclk. This requires the logic in each pipeline stage to 

be simplified and, therefore, the number of pipeline stages to be increased. 

 Reduce the average number of clock cycles per instruction, CPI. This 

requires either that instructions which occupy more than one pipeline slot in a 3-

stage pipeline ARM are re-implemented to occupy fewer slots, or that pipeline 

stalls caused by dependencies between instructions are reduced, or a 

combination of both. 

To get a significantly better CPI, the memory system must deliver more than one 

value in each clock cycle either by delivering more than 32 bits per  cycle from a single 

memory or by having separate memories for instruction and data accesses. As a result of 

the above issues, higher performance ARM cores employ a 5-stage pipeline and have 

separate instruction and data memories. Breaking instruction execution down into five 

components rather than three reduces the maximum work which must be completed in a 

clock cycle, and hence allows a higher clock frequency to be used. The separate 

instruction and data memories allow a significant reduction in the core's CPI. 

 A typical 5-stage ARM pipeline is that employed in the ARM9TDMI. The                       

ARM processors which use a 5-stage pipeline have the following pipeline stages: 

• Fetch; the instruction is fetched from memory and placed in the instruction pipeline. 

• Decode; the instruction is decoded and register operands read from the register 

file. There are three operand read ports in the register file, so most ARM instructions can 

source all their operands in one cycle. 

• Execute; an operand is shifted and the ALU result generated. If the instruction is 

a load or store the memory address is computed in the ALU. 

• Buffer/data; data memory is accessed if required. Otherwise the ALU result is 

simply buffered for one clock cycle to give the same pipeline flow for all instructions. 

• Write-back; the results generated by the instruction are written back to the 

register file, including any data loaded from memory.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

89 

 

 

   Fig. ARM9TDMI 5-stage pipeline organization 

               Data forwarding : A major source of complexity in the 5-stage pipeline 

(compared to the 3-stage pipeline) is that, because instruction execution is spread across 

three pipeline stages, the only way to resolve data dependencies without stalling the 

pipeline is to introduce forwarding paths. 

 Data dependencies arise when an instruction needs to use the result of one 

of its predecessors before that result has returned to the register file. Forwarding paths 

allow results to be passed between stages as soon as they are available, and the 5-stage 

ARM pipeline requires each of the three source operands to be forwarded from any of 

three intermediate result registers  

There is one case where, even with forwarding, it is not possible to avoid a 

pipeline stall. Consider the following code sequence: 

LDR rN, XX   ; load rN from XX 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

90 

 

ADD r2, r1, rN   ; and use it immediately 

 The processor cannot avoid a one-cycle stall as the value loaded into rN 

only enters the processor at the end of the buffer/data stage and it is needed by the 

following instruction at the start of the execute stage. The only way to avoid this stall is to 

encourage the compiler (or assembly language programmer) not to put a dependent 

instruction immediately after a load instruction. 

                      

3. Describe the datatypes used for architectural support of ARM.  

 The definition of the ARM instruction set introduces an abstraction away from 

logic variables when it expresses the functions of the processor in terms of instructions, 

bytes, words and  addresses. 

  Each of these terms describes a collection of logic variables viewed in a 

particular way. The difference is not in the way the information is stored but in the way it is 

used. A computer data type can therefore be characterized by: 

 the number of bits it requires; 

 the ordering of those bits; 

 the uses to which the group of bits is put. 

 Some data types, such as addresses and instructions, exist principally to serve the 

Purposes of the computer, whereas others exist to represent information in a way 

that is accessible to human users. The most basic of the latter category, in the context of 

computation, is the number. 

(i) Numbers  :A complex mechanism capable of computing the behaviour of 

transistors a thousandth of a millimeter wide switching a hundred million times a second . 

(ii) Roman numerals  is a number written by a human:MCMXCV 

(iii) Decimal Numbers: The interpretation of this Roman numeral is complex; the 

value of a symbol depends on the symbol and its positional relationship to its neighbors. 

This way of writing a number has largely been replaced by the decimal scheme where the 

same number appears as: 1995 

(iv)Binary coded decimal  

We need four Boolean variables to be able to represent each digit from 0 to 9 

differently, so the first form of this number that could easily be handled by logic gates is: 

0001 1001 1001 0101 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

91 

 

This is the binary coded decimal scheme which is supported by some computers 

and is commonly used in pocket calculators. 

(v) BINARY NOTATION: Most computers, abandon the human-oriented decimal 

scheme altogether in favour of a pure binary notation where the same number 

becomes:11111001011 

(vi) HEXADECIMAL NOTATION : Although machines use binary numbers 

extensively internally, a typical 32-bit binary number is fairly unmemorable, but rather than 

convert it to the familiar decimal form (which is quite hard work and error-prone), computer 

users often describe the number in hexadecimal (base 16) notation. This uses  0 to 9 as 

themselves and A to F to represent 10 to 15. Our number becomes: 7CB 

(vii) NUMBER RANGES The ARM deals efficiently with 32-bit quantities, so the 

first data type that the architecture supports is the 32-bit (unsigned) integer, which has a 

value in the range: 0 to 4 294 967 29510 = 0 to FFFFFFFF16 

(vii) SIGNED INTEGERS In many cases it is useful to be able to represent 

negative numbers as well as positive ones. Here the ARM supports a 2's complement 

binary notation where the value of the top bit is made negative; in a 32-bit signed integer all 

the bits have the same value as they have in the unsigned case apart from bit 31, which 

has the value -231instead of +231. Now the range of numbers is: 

-2 147 483 64810 to +2 147 483 64710 = 8000000016 to 7FFFFFFF16 

The 'architectural support' for signed integers is the V flag in the program status 

registers which has no use when the operands are unsigned but indicates an overflow(out 

of range) error when signed operands are combined.  

(viii)REAL NUMBERS The representation of real numbers in computers is a big 

issue that is deferred to the next section. An ARM core has no support for real data types, 

though ARM Limited has defined a set of types and instructions that operate on them. 

These instructions are either executed on a floating-point coprocessor or emulated in 

software. 

(ix)PRINTABLE CHARACTERS After the number, the next most basic data type 

is the printable character. To control a standard printer we need a way to represent all the 

normal characters such as the upper and lower case alphabet, decimal digits from 0 to 9, 

punctuation marks and a number of special characters such as £, $, %, and so on. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

92 

 

(x) ASCII The normal way to store an ASCII character in a computer is to put the 

7-bit binary code into an 8-bit byte. Many systems extend the code using, for example, the 

8-bit ISO character set where the other 128 binary codes within the byte represent special 

characters (for instance, characters with accents). The most flexible way to represent 

characters is the 16-bit 'Unicode' which incorporates many such 8-bit character sets within 

a single encoding.'1995' encoded as 8-bit printable characters is: 

00110001 00111001 00111001 00110101 =31 39 39 3516 

 

ARCHITECTURAL SUPPORT FOR CHARACTERS  

  The support in the ARM architecture for handling characters is the 

unsigned byte load and store instructions; these have already been mentioned as being 

available to support small unsigned integers, but that role is rare compared with their 

frequency of use for transferring ASCII characters. 

(a) Byte ordering 

The above ASCII example highlights an area of some potential difficulty. It is 

written to be read from left to right, but if it is read as a 32-bit word, the least significant byte 

is at the right. A character output routine might print characters at successive increasing 

byte addresses, in which case, with 'little-endian' addressing, it will print '5991'.  

(b) High-level languages 

A high-level language defines the data types that it needs in its specification, usually 

without reference to any particular architecture that it may run on. Sometimes the 

number of bits used to represent a particular data type is architecture-dependent in 

order to allow a machine to use its most efficient size. 

(c ) ANSI C basic data types 

The dialect of the 'C' language defined by the American National Standards Institute 

(ANSI), and therefore known as 'ANSI standard C' or simply 'ANSI C', defines 

the following basic data types: 

• Signed and unsigned characters of at least eight bits. 

• Signed and unsigned short integers of at least 16 bits. 

• Signed and unsigned integers of at least 16 bits. 

• Signed and unsigned long integers of at least 32 bits. 

• Floating-point, double and long double floating-point numbers. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

93 

 

   The ARM C compiler adopts the minimum sizes for each of 

these types except the standard integer, where it uses 32-bit values since this is the most 

frequently used data type and the ARM supports 32-bit operations more efficiently than 16-

bit operations. 

ANSI C derived data types 

In addition, the ANSI C standard defines derived data types: 

• Arrays of several objects of the same type. 

• Functions which return an object of a given type. 

• Structures containing a sequence of objects of various types. 

• Pointers (which are usually machine addresses) to objects of a given type. 

• Unions which allow objects of different types to occupy the same space at different times.  

4.(a) Explain the ARM coprocessor interface 

The ARM supports a general-purpose extension of its instruction set through the 

addition of hardware coprocessors, and it also supports the software emulation of these 

coprocessors through the undefined instruction trap. 

Coprocessor architecture 

The coprocessors most important features are: 

•  Support for up to 16 logical coprocessors.  

•  Each coprocessor can have up to 16 private registers of any reasonable size; 

they are not limited to 32 bits.  

•  Coprocessors use a load-store architecture,with instructions to perform internal 

operations on registers, instructions to load and save registers from and to memory, and 

instructions to move data to or from an ARM register.  

The simpler ARM cores offer the coprocessor interface at board level, so a co-

processor may be introduced as a separate component. High clock speeds make board-

level interfacing very difficult, so the higher-performance ARMs restrict the coprocessor 

interface to on-chip use, in particular for cache and memory management control functions, 

but other on-chip coprocessors may also be supported. 

ARM7TDMI coprocessor interface 

 The ARM7TDMI coprocessor interface is based on 'bus watching' (other ARM 

cores use different techniques). The coprocessor is attached to a bus where the ARM 

instruction stream flows into the ARM, and the coprocessor copies the instructions into an 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

94 

 

internal pipeline that mimics the behaviour of the ARM instruction pipeline. As each 

coprocessor instruction begins execution there is a 'hand-shake' between the ARM and the 

coprocessor to confirm that they are both ready to execute it. The handshake uses three 

signals: 

1.  cpi (from ARM to all coprocessors).This signal, which stands for 'Coprocessor 

Instruction', indicates that the ARM has identified a coprocessor instruction and wishes to 

execute it. 

2.  cpa (from the coprocessors to ARM).This is the 'Coprocessor Absent' signal 

which tells the ARM that there is no coprocessor present that is able to execute the current 

instruction. 

3.  cpb (from the coprocessors to ARM).This is the 'CoProcessor Busy' signal 

which tells the ARM that the coprocessor cannot begin executing the instruction yet. 

The timing is such that both the ARM and the coprocessor must generate their 

respective signals autonomously. The coprocessor cannot wait until it sees cpi before 

generating cpa and cpb. 

Handshake outcomes: 

Once a coprocessor instruction has entered the ARM7TDMI and coprocessor 

pipe-lines, there are four possible ways it may be handled depending on the handshake 

signals: 

1.  The ARM may decide not to execute it, either because it falls in a branch 

shadow or because it fails its condition code test. 

 2.  The ARM may decide to execute it, but no present coprocessor can take it so 

cpa stays active. ARM will take the undefined instruction trap and use software to recover, 

possibly by emulating the trapped instruction.  

3.  ARM decides to execute the instruction and a coprocessor accepts it, but 

cannot execute it yet. The coprocessor takes cpa low but leaves cpb high. The ARM will 

'busy-wait' until the coprocessor takes cpb low, stalling the instruction stream at this point. 

If an enabled interrupt request arrives while the coprocessor is busy, ARM will break off to 

handle the interrupt, probably returning to retry the coprocessor instruction later.  

4.  ARM decides to execute the instruction and a coprocessor accepts it for 

immediate execution, cpi, cpa and cpb are all taken low and both sides commit to complete 

the instruction. 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

95 

 

Data transfers 

If the instruction is a coprocessor data transfer instruction the ARM is responsible 

for generating an initial memory address but the coprocessor determines the length of the 

transfer;  

ARM will continue incrementing the address until the coprocessor signals 

completion. The cpa and cpb handshake signals are also used for this purpose. Since the 

data transfer is not interruptible once it has started, coprocessors should limit the maximum 

transfer length to 16 words. 

Pre-emptive execution 

A coprocessor may begin executing an instruction as soon as it enters its pipeline 

so long as it can recover its state if the handshake does not ultimately complete.  

 

 

 

 

4. (b)Explain how ARM instruction execution done in ARM processor 

Data processing instructions: 

A data processing instruction requires two operands, one of which is always a 

register and the other is either a second register or an immediate value.  

The second operand is passed through the barrel shifter where it is subject to a 

general shift operation, and then it is combined with the first operand in the ALU using a 

general ALU operation. Finally, the result from the ALU is written back into the destination 

register  

All these operations take place in a single clock cycle data processing 

instructions only the bottom eight bits (bits [7:0]) of the instruction are used in the 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

96 

 

immediate value. 

 

Data transfer instructions 

A data transfer (load or store) instruction computes a memory address in a 

manner very similar to the way a data processing instruction computes its result.  

A register is used as the base address, to which is added (or from which is 

subtracted) an offset which again may be another register or an immediate value.  

This time, however, a 12-bit immediate value is used without a shift operation 

rather than a shifted 8-bit value.  

 

Datapath operation 

     The datapath operation for the two cycles of a data store instruction (SIR) 

with an immediate offset .Incremented PC value is stored in the register bank at the end of 

the first cycle so that the address register is free to accept the data transfer address for the 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

97 

 

second cycle, then at the end of the second cycle the PC is fed back to the address 

register to allow instruction pre fetching to continue.  

It should, perhaps, be noted at this stage that the value sent to the address 

register in a cycle is the value used for the memory access in the following cycle. 

                            

 The address register is, in effect, a pipeline register between the processor 

data path and the external memory.  

Branch instructions 

     Branch instructions compute the target address in the first cycle. A 24-bit 

immediate field is extracted from the instruction and then shifted left two bit positions to 

give a word-aligned offset which is added to the PC.  

The result is issued as an instruction fetch address, and while the instruction 

pipeline refills the return address is copied into thelink register (r14) if this is required. 

The third cycle, which is required to complete the pipeline refilling, is also used 

to make a small correction to the value stored in the link register in order that it points 

directly at the instruction which follows the branch.                                            

5. Explain any one application of ARM in the field of embedded system. 

The Ericsson-VLSI Bluetooth Baseband Controller 

Bluetooth is a de-facto standard for wireless data communication for the 2.4 

GHz band developed by a consortium of companies including Ericsson, IBM, Intel, Nokia 

and Toshiba.  

The standard is intended to support short-range communication (from 10cm to 

10m range) in a manner similar to that currentlyachieved with infrared communication 

using the IrDA standard, but avoiding the line-of-sight, alignment, and mutual interference 

restrictions of IrDA.  

Using radio communica-tion, Bluetooth is intended to support laptop to cellular 

telephone, printer, PDA, desktop, fax machines, keyboards, and so on,and it can also 

provide a bridge to existing data networks.  

It serves as a cable replacement technology for per-sonal networks.The 

standard supports a gross data rate of1 Mbit/s, and uses a frequency hopping scheme and 

forward error correction to give robust communication in a noisy and uncoordinated 

environment.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

98 

 

The Ericsson-VLSI Bluetooth Baseband Controller chip is a jointly developed 

stand-ard part which is intended for use in portable Bluetooth-based communication 

devices. 

Bluetooth 'piconet':  

 

Bluetooth units dynamically form ad hoc 'piconets', which are groups of two to 

eight units that operate the same frequency-hopping scheme.  

All of the units are equal peers with identical implementations, though one of 

the units will operate as master when the piconet is established. 

 The master defines the clock and hopping sequence that synchronize the 

piconet. Multiple piconets can be linked to form a 'scatternet'. 

Bluetooth controller organization: 

The chip is based around a synthesized ARM7TDMI core and includes 64 

Kbytes of fast (zero wait state) on-chip SRAM and a 4K byte instruction cache. Critical 

routines can be loaded into the RAM to get the best performance.  

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

99 

 

The cache improves the performance and power-efficiency of code resident 

in the off-chip memory. There is a set of peripheral modules which share a number of 

pins,  

Fig: Ericsson Blue tooth core 

Including three UARTs, a USB interface and an I2C-bus interface. FIFO buffers 

decouple the processor from having to respond to every byte which is transferred through 

these interfaces. The external bus interface supports devices with 8- and 16-bit data buses 

and has flexible wait state generation.  

The counter timer block has three 8-bit counters connected to a 24-bit 

prescaler, and an interrupt controller gives control of all on- and off-chip interrupt sources. 

Ericsson Bluetooth Core: 

The Bluetooth Baseband Controller includes a power-optimized hardware 

block, the Ericsson Bluetooth Core (EBC), which handles all the Link Controller 

functionality within the Bluetooth specification and includes the interface logic to a 

Bluetooth radio implementation.  

The EBC performs all the packet-handling functions for point-to-point, multislot 

and point-to-multipoint communications. The baseband protocol uses a combination of 

circuit and packet switching. Slots can be reserved for synchronous channels, for example 

to support voice transmission. 

Power Management: 

The chip has four power management modes: 

1.  On-line: all blocks are clocked at their normal speed. The ARM7TDMI core 

clock is between 13 and 40 MHz, depending on the application. At the maximum data 

transfer rate the current consumption is around 30 mA.  

2. Command: The ARM7TDMI clock is slowed by the insertion of wait states.  

3. Sleep: The ARM7TDMI clock is stopped, as are the clocks to a programmable 

subset of the other blocks. The current drawn in this mode is around 0.3 mA.  

4. Stopped: The clock oscillator is turned off. 

Bluetooth system: 

The baseband controller chip requires an external radio module and program 

ROM to complete the system. The high level of integration leads to a very compact and 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

100 

 

economic implementation of a sophisticated and highly functional radio communication 

system.  

 Fig: Bluetooth 

Bluetooth silicon: 
www.EasyEngineering.net

The synthesized ARM7TDMI core in the top-right corner of the chip has far less 

visible structure than the ARM7TDMI hard macro cell. The processor is capable of 

operating at up to 39 MHz, but the data shown in the table are representative of a typical 

GSM application. The chip I/Os operate at 3.3 V, but the core logic typically operates at 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://easyengineering.net
http://easyengineering.net


 

 

101 

 

 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


 

 

102 

 

 

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net

